Лосик Екатерина Александровна

Клинико-морфологическая характеристика аутоиммунного гастрита

Специальность: 14.01.28. – гастроэнтерология

Диссертация на соискание ученой степени кандидата медицинских наук

Научный руководитель:

dоктор медицинских наук,
профессор, академик РАН
Ивашкин Владимир Трофимович

Москва – 2018 г.
Оглавление

Введение .. 5
Актуальность исследования ... 5
Глава 1. Обзор литературы .. 13

1.1. Введение... 13
1.2. Распространенность аутоиммунного гастрита .. 15
1.3. Сочетание различных заболеваний с аутоиммунным гастритом 17
1.4. Этиология и патогенез аутоиммунного гастрита .. 20
1.4.1. Генетические особенности пациентов с аутоиммунным гастритом 21
1.4.2. Роль инфекции Helicobacter pylori в развитии аутоиммунного гастрита 22
1.4.3. Особенности иммунного ответа при аутоиммунном гастрите 24
1.5. Диагностика аутоиммунного гастрита ... 25
1.5.1. Серологическая диагностика атрофических изменений слизистой оболочки желудка ... 26
1.5.2. Диагностика дефицита витамина В12 .. 28
1.6. Клиническая картина аутоиммунного гастрита .. 30
1.6.1. В12-дефицитная анемия ... 32
1.6.2. Дефицит железа у пациентов с аутоиммунным гастритом 34
1.6.3. Неврологические проявления дефицита витамина В12 34
1.6.4. Другие проявления дефицита витамина В12 ... 36
1.7. Патоморфология аутоиммунного гастрита .. 37
1.7.1. Основные механизмы регуляции функций слизистой оболочки желудка .. 37
1.7.2. Морфологические изменения при аутоиммунном гастрите 40
1.8. Лечение аутоиммунного гастрита ... 43
1.8.1. Предупреждение развития атрофии у пациентов с аутоиммунным гастритом .. 44
1.8.2. Лечение дефицита витамина В12 ... 45
1.8.3. Лечение карциноида желудка у пациентов с аутоиммунным гастритом 47
1.9. Прогноз при аутоиммунном гастрите ... 47
1.9.1. Пернициозная анемия ... 47
1.9.2. Карциноид желудка .. 48
1.9.3. Аденокарцинома желудка ... 49

ГЛАВА 2. Материалы и методы исследования ... 52

2.1 Характеристика больных .. 52
2.2 Лабораторные методы исследования ... 56
2.3 Эндоскопические методы исследования ... 58
2.4 Гистологические методы исследования ... 58
2.5 Иммуноферментный анализ .. 60
 2.5.1. Количественное определение аутоантител класса G к париетальным клеткам желудка (ORGENTEC Anti-Parietal Cell (H+/K+-ATPase), ORGENTEC Diagnostika GmbH, Германия) .. 61
 2.5.2. Тест-система «Гастропанель» («Биохит», Финляндия) 63
2.6 Методы диагностики инфекции H. pylori .. 70
 2.6.1 Дыхательный тест с 13С-меченной мочевиной 70
 2.6.2. Быстрый уреазный тест (тест-система ХЕЛПИЛ, ООО «Ассоциация Медицины и Аналитики», Россия) ... 71
 2.6.3 Определение антител IgG к H. pylori в сыворотке крови. 72
2.7 Эрадикационная терапия Helicobacter pylori .. 72
2.8 Инструментальные методы оценки секреции желудка 72
2.9 Статистическая обработка данных ... 73

ГЛАВА 3. Результаты исследований ... 75

3.1 Антитела к париетальным клеткам у пациентов с аутоиммунными заболеваниями ... 75
3.2 Характеристика пациентов с антителами к париетальным клеткам 77
3.3 Оценка показателей клинического анализа крови у пациентов с антителами к париетальным клеткам и пациентов без аутоиммунных заболеваний 78
3.4 Оценка показателей биохимического анализа крови у пациентов с антителами к париетальным клеткам и без аутоиммунных заболеваний 86
3.5 Инфекция H. pylori у пациентов с антителами к париетальным клеткам 93
 3.5.1 Оценка показателей клинического анализа крови в зависимости от наличия инфекции H. pylori ... 93
 3.5.2 Оценка показателей биохимического анализа крови у пациентов с и без инфекции H. pylori ... 101
3.6 Серологические показатели атрофии слизистой оболочки желудка 103
<table>
<thead>
<tr>
<th>Глава</th>
<th>Название раздела</th>
<th>Страница</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6.1</td>
<td>Оценка серологических маркеров атрофии слизистой оболочки желудка в зависимости от показателей клинического анализа крови</td>
<td>108</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Оценка серологических маркеров атрофии слизистой оболочки желудка в зависимости от показателей биохимического анализа крови</td>
<td>110</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Оценка серологических маркеров атрофии слизистой оболочки желудка у пациентов в зависимости от наличия инфекции H. pylori</td>
<td>111</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Оценка показателей клинического и биохимического анализа крови, частоты H. pylori у пациентов с атрофическим гастритом тела желудка</td>
<td>118</td>
</tr>
<tr>
<td>3.7</td>
<td>Характеристика данных эндоскопического исследования</td>
<td>124</td>
</tr>
<tr>
<td>3.8</td>
<td>Результаты морфологического исследования слизистой оболочки желудка у пациентов с АПК</td>
<td>126</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Результаты морфологического исследования слизистой оболочки тела желудка</td>
<td>126</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Результаты морфологического исследования слизистой оболочки антрального отдела желудка</td>
<td>128</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Результаты иммуногистохимического исследования слизистой оболочки желудка</td>
<td>129</td>
</tr>
<tr>
<td>3.9</td>
<td>Клинические примеры</td>
<td>131</td>
</tr>
<tr>
<td>Клинический пример №1</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>Клинический пример №2</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>Клинический пример №3</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>Заключение</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>ГЛАВА 4.</td>
<td>Обсуждение полученных результатов</td>
<td>141</td>
</tr>
<tr>
<td>Выводы</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>Практические рекомендации</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Список сокращений</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>Список литературы</td>
<td>153</td>
<td></td>
</tr>
</tbody>
</table>
Введение

Актуальность исследования

Аутоиммунный гастрит представляет собой заболевание с неизвестной этиологией и аутоиммунным механизмом развития. Данных о частоте аутоиммунного гастрита в популяции, в том числе в Российской Федерации, нет. Предполагается, что доля аутоиммунного поражения слизистой оболочки желудка среди всех гастритов составляет около 5%. Одним из проявлений атрофии слизистой оболочки желудка вследствие аутоиммунного процесса служит развитие В12-дефицитной анемии, связанной со снижением синтеза внутреннего фактора Касла. Аутоиммунный гастрит расценивается как крайне редкое заболевание, диагноз которого обычно устанавливают при выяснении причины макроцитарной анемии.

Активное изучение хронического гастрита, ассоциированного с инфекцией Helicobacter pylori, появление диагностических возможностей для определения антител к париетальным клеткам и витамина В12 в сыворотке крови позволило с новых позиций подойти к диагностике и ведению больных с аутоиммунным гастритом. Согласно недавним исследованиям, маркеры аутоиммунного гастрита можно выявить у пациентов еще до развития атрофических изменений слизистой оболочки желудка, так морфологические признаки атрофии слизистой оболочки желудка у части пациентов были выявлены спустя 5 лет от момента определения антител к париетальным клеткам. Таким образом, актуальной проблемой следует признать ранний диагноз аутоиммунного поражения желудка еще до развития атрофии тела желудка и макроцитарной анемии с целью профилактики этих изменений.

Аутоиммунный гастрит часто сочетается с другими аутоиммунными заболеваниями, такими как аутоиммунный тиреоидит, болезнь Аддисона, витилиго, сахарный диабет 1 типа. Например, у 20% пациентов с аутоиммунными поражениями щитовидной железы выявляются антитела к париетальным клеткам; среди пациентов с болезнью Аддисона частота аутоиммунного гастрита составила практически 30%; у пациентов с сахарным диабетом 1 типа антитела к
Париетальным клеткам выявлены у 20% больных. В настоящее время не установлено, характерно ли сочетание аутоиммунного гастрита с другими заболеваниями органов пищеварения аутоиммунной природы (например, с целиакией и аутоиммунным гепатитом), каковы клинические особенности такого сочетания. Актуальность темы исследования подкрепляется комплексным исследованием антител к париетальным клеткам у больных с аутоиммунными заболеваниями, связь которых с аутоиммунным гастритом установлена или еще не ясна, что крайне важно с более частой диагностикой этих нозологических форм.

Долгое время обсуждается вопрос о влиянии инфекции \textit{H.pylori} на инициирование аутоиммунного механизма развития атрофического гастрита. Возможно, что именно \textit{H. pylori} служит пусковым моментом, «запускающим» аутоиммунный процесс. Недавно было показано, что у некоторых пациентов инфекция \textit{H.pylori} может вызывать активацию T-клеток в слизистой оболочке желудка вследствие антигенной мимикрии микроорганизма, причем основной мишенью служит протонная помпа париетальных клеток. Таким образом, оценка частоты инфекции \textit{H.pylori} при аутоиммунном гастрите и ее возможного участия в патогенезе заболевания представляются своевременными.

Согласно статистическим данным в России рак желудка занимает второе место среди онкологических заболеваний у мужчин и третье место у женщин. Доказано, что атрофический гастрит является предраковым заболеванием слизистой оболочки желудка. При длительном наблюдении за больными с атрофическим гастритом обнаружено, что через 10 лет рак желудка развивается у 1 из 150 наблюдаемых пациентов, а через 15 лет он может быть выявлен у 10%. Таким образом, раннее выявление в слизистой оболочке желудка атрофии служит непременным условием профилактики рака желудка. Кроме высокого риска рака желудка аутоиммунный гастрит повышает риск карциноида, который развивается у 5% пациентов. Актуальность разработки алгоритма ведения больных аутоиммунным гастритом для профилактики этих новообразований с определением порядка и периодичности наблюдения за ними не вызывает сомнения.
Степень разработанности темы исследования

В настоящее время аутоиммунный гастрит остается заболеванием с неустановленной этиологией и малоизученным патогенезом. Не определена роль инфекции *H. pylori* в развитии и течении АИГ. Кроме того, недостаточно данных о начальных серологических и морфологических изменениях при аутоиммунном поражении слизистой оболочки желудка. Остается неразработанным вопрос о ранней профилактике пернициозной анемии и коррекции уровня витамина В12. Учитывая канцерогенный потенциал АИГ в отношении карциноида и рака желудка, требует уточнения порядок наблюдения за пациентами в целях ранней диагностики заболевания.

Исходя из вышеизложенного были сформулированы цель и задачи настоящего исследования.

Цель настоящей работы

Дать клинико-морфологическую характеристику аутоиммунного гастрита.

Задачи исследования

1) Оценить частоту больных аутоиммунным гастритом среди больных другими аутоиммунными заболеваниями (аутоиммунный тиреоидит, целиакия, аутоиммунный гепатит)
2) Охарактеризовать возможные клинические сочетания аутоиммунного гастрита с другими заболеваниями аутоиммунной природы
3) Оценить частоту развития дефицита В12 и макроцитарной анемии при аутоиммунном гастрите
4) Определить особенности морфологической картины аутоиммунного гастрита, оценить наличие атрофии и кишечной метаплазии и дать прогностическую оценку этим предраковым изменениям слизистой оболочки желудка
5) Оценить частоту инфекции *H. pylori* при аутоиммунном гастрите и ее возможное участие в патогенезе заболевания
6) Оценить влияние эрадикационной терапии *H.pylori* на течение аутоиммунного гастрита

7) Определить диагностическую значимость сывороточного пепсиногена I для диагностики аутоиммунного гастрита и оценить динамику пепсиногена I после эрадикационной терапии *H.pylori*

Научная новизна

В настоящее время аутоиммунный гастрит изучен недостаточно. Нет данных о частоте его в популяции и сочетании с другими аутоиммунными заболеваниями. До конца остается непонятным является ли инфекция *H.pylori* тритгерным фактором развития аутоиммунного поражения желудка. Необходима изучение влияния эрадикационной терапии *H.pylori* на течение аутоиммунного гастрита. Не выявлено четких корреляционных связей между морфологическими изменениями слизистой оболочки желудка и сывороточными маркерами атрофических изменений (пепсиноген I, отношение пепсиноген I/пепсиногенII, гастрин-17) при аутоиммунном процессе в слизистой оболочке желудка. Одной из задач является рассмотрение атрофии слизистой оболочки желудка как предракового состояния и его прогностическая оценка. Важно также ранее выявление дефицита витамина B12 у пациентов с аутоиммунным гастритом и предупреждение развития В12-дефицитной анемии.

Теоретическая и практическая значимость работы

Установлена высокая частота аутоиммунного гастрита у пациентов с аутоиммунным тиреодитом. Кроме того, отмечено, что распространенность АИГ увеличивается с возрастом. В настоящее время классическая картина В12-дефицитной анемии, сопровождающейся глюсситом Гунтера-Мюллера и фукулярным миелозом, встречается редко. Основными гематологическими проявлениями АИГ выступает макроцитоз эритроцитов на фоне дефицита витамина B12, а также дефицит железа преимущественно у молодых женщин.
Распространенность инфекции *H.pylori* у пациентов с АИГ не отличалась от популяционных показателей, хотя у лиц с выраженными атрофическими изменениями в теле желудка инфекционный агент встречался достоверно реже. Выявлено, что степень атрофии слизистой оболочки увеличивается с возрастом, а также по мере нарастания титра антител к париетальным клеткам.

К ранним морфологическим проявлениям АИГ относят лимфоплазмоцитарную инфильтрацию с формированием лимфоидных фолликулов, псевдогипертрофию париетальных клеток и кистозное расширение просвета желез. По мере развития атрофических изменений снижается концентрация сывороточного пепсиногена I, уменьшается отношение пепсиноген I/II, а также развивается гипергастринемия.

Пациенты с АИГ угрожаемы по развитию карциноида и аденокарциномы желудка за счет развития атрофии и кишечной метаплазии. Одним из шагов к профилактике прогрессирования патологических изменений является проведение эрадикационной терапии *H.pylori*.

Личное участие автора в получении результатов

Автором самостоятельно проведен обзор отечественной и зарубежной литературы по изучаемой теме, обобщены результаты исследований и подготовлены материалы к публикациям.

Методология и методы исследования

Методологической основой исследования послужила совокупность клинических, лабораторно-инструментальных и статистических методов.

Основные положения, выносимые на защиту

1) Антитела к париетальным клеткам желудка (АПК) были выявлены у 51,9% пациентов с аутоиммунным тиреоидитом и у 30,4% пациентов с аутоиммунными заболеваниями печени. В то же время АПК обнаруживались у 23% лиц контрольной группы, не имеющих аутоиммунных заболеваний. Различия между распространенностью АПК у пациентов с тиреоидитом и
пациентами без аутоиммунных заболеваний были достоверны (p=0,0020). Собственно аутоиммунный гастрит (АПК и низкий уровень пепсиногена I) выявлялся у 26% пациентов с аутоиммунным тиреоидитом, у 13% больных с аутоиммунными заболеваниями печени и у 7,7% пациентов контрольной группы.

2) В изучаемой группе было отмечено достоверное увеличение частоты обнаружения АПК с возрастом: от 27,9% у лиц 20-39 лет до 53,8% у пациентов 70-79 лет (p=0,0376). Достоверной разницы между распространенностью АПК у мужчин и женщин не выявлено.

3) У 16,9% пациентов с АПК определялся дефицит витамина В12, у 7% больных из этой группы – макроцитарная анемия, дефицит железа определялся у 9,9% больных. Частыми изменениями лабораторных показателей у пациентов с АПК служили макроцитоз (16,9%) и гиперхромия (8,5%). Наиболее высокие показатели среднего объема эритроцитов и среднего содержания гемоглобина в эритроците обнаруживались у пациентов старше 70 лет. Дефицит витамина В12 достоверно чаще отмечался у пациентов с АПК и низким уровнем пепсиногена I по сравнению с пациентами с нормальным уровнем пепсиногена I (32,4% против 3,3%, p=0,0030).

4) У пациентов с АПК при морфологическом исследовании характерными изменениями являлись лимфоплазмоцитарная инфильтрация слизистой оболочки тела желудка с формированием лимфоидных фолликулов, псевдогипертрофия париетальных клеток, кистозное расширение просвета желудка. Наиболее часто определялась умеренная и средняя степень атрофии слизистой оболочки с развитием кишечной метаплазии.

5) У 54,9% пациентов с АПК обнаруживалась инфекция H.pylori, что достоверно не отличалось от распространенности H.pylori у пациентов без АПК (56,2%). Инфекция H.pylori чаще выявлялась у пациентов с АПК и нормальным уровнем пепсиногена I в сравнении с пациентами со сниженным содержанием H.pylori.
пепсиногена I и атрофическими изменениями в теле желудка (соответственно 70% и 35,3%, p=0,0056).

6) У 47,9% пациентов с АПК отмечено снижение пепсиногена I, отношение пепсиноген I/II было ниже нормальных значений у 45,1% больных, повышение уровня гастрин-17 имело место у 64,8% пациентов, что указывало на наличие атрофических изменений в теле желудка. Выявлена отрицательная корреляционная связь между титром АПК и уровнем пепсиногена I (коэффициент корреляции Спирмена -0,50, p<0,0001). Положительная корреляционная связь обнаружена между уровнем пепсиногена I и содержанием витамина B12 (коэффициент корреляции Спирмена 0,23, p=0,0517).

7) Проведение эрадикационной терапии H. pylori у пациентов с АПК тормозит дальнейшее прогрессирование атрофических изменений слизистой оболочки тела желудка и способствует стабилизации уровня пепсиногена I.

Степень достоверности и апробация результатов

Достоверность полученных в ходе работы данных определяется достаточным числом исследований, комплексным подходом к проведению исследований, выполненных с использованием современных методов и статистическим анализом полученных результатов. Все выводы и практические рекомендации диссертации логично вытекают из полученных результатов и соответствуют цели и задачам исследования.

Основные результаты работы полностью отражены в печати. По теме диссертации опубликовано 5 статей в российских журналах, входящих в Перечень рецензируемых журналов, рекомендованных ВАК.

Материалы диссертации доложены в рамках 78, 85, 93 сессий Национальной школы гастроэнтерологов, гепатологов РГА (Москва, 2014 и 2016 гг.), Московского терапевтического общества (Москва, 2014 г.), XIX Российской Гастроэнтерологической Недели (Москва, 2015 гг.), монотематической

Основные положения диссертационной работы нашли практическое применение в клинике пропедевтики внутренних болезней, гастроэнтерологии и гепатологии Первого МГМУ им. И. М. Сеченова (директор клиники – академик РАН, профессор В. Т. Ивашкин).

Апробация диссертационной работы состоялась на заседании кафедры пропедевтики внутренних болезней лечебного факультета ФГАОУ ВО МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет) 20 декабря 2017 года.

Объем и структура диссертации

Материалы диссертации изложены на 173 страницах машинописного текста. Работа включает: введение, 4 главы, выводы и практические рекомендации. Библиографический указатель содержит 194 источника литературы (14 отечественных и 180 зарубежных авторов). Диссертация иллюстрирована 45 таблицами, 38 рисунками.

Соответствие диссертации паспорту научной специальности

Диссертация соответствует шифру научной специальности: 14.01.28 – гастроэнтерология. Гастроэнтерология – область медицинской науки, занимающаяся изучением заболеваний органов пищеварительной системы. Основное внимание уделяется этиологии, эпидемиологии, патогенезу, диагностике, лечению и профилактике гастроэнтерологических заболеваний. Диссертация соответствует формуле специальности и области исследований согласно пункту 12.
Глава 1. Обзор литературы

1.1. Введение

Впервые описание В12-дефицитной анемии дал в 1849 году английский врач T.Addison на заседании Медицинского Общества Южного Лондона. Чуть позже в 1872 году в Цюрихе М.А. Biermer характеризуя данную форму анемии дал ей название «пернициозной» (злокачественной) [50]. С тех пор анемия, связанная с дефицитом витамина B12, стала именоваться анемией Аддисона-Бирмера или пернициозной анемией. В 1880 году R.Ehrlich охарактеризовал увеличенные эритроциты при пернициозной анемии и дал им название – мегалобласть [70]. Со временем появились данные о других гематологических проявлениях – пойкилоцитозе (Quincke, 1877), мегалобластах в костном веществе (Zadek, 1921), гиперсегментированных нейтрофилах (Naegeli, 1923), гигантских метамиелоцитах в костном веществе (Tempka и Braun, 1932). Кроме того, было выявлено, что у пациентов с В12-дефицитной анемией развивается патология нервной системы – ощущение онемения в кистях рук, атаксия, жжение языка (Lichtheim, 1887). Однако лишь в 1900 J.R. Russel объединил все неврологические нарушения охарактеризовав их как «подострую комбинированную дегенерацию спинного мозга» (функулярный миелоз). Однако причина развития пернициозной анемии оставалась неясной. Впервые в 1900 году морфологи K. Faber и C.E. Bloch описали атрофические изменения в слизистой оболочке желудка у пациента с пернициозной анемией [74]. В 1922 году A. Hurst отметил, что нейропатии, пернициозной анемии также сопутствует гипохлоргидрия желудочного сока. Таким образом, по результатам наблюдений сформировалось представление о В12-дефицитной анемии, как об анемии с неврологическими проявлениями и патологией желудка.

R.C. Cabot в 1908 году опубликовал результаты многолетних наблюдений за 1200 пациентами с пернициозной анемией [44]. Он отметил, что прогноз пациентов крайне неблагоприятный: после появления клинических симптомов и установления диагноза средняя продолжительность жизни составляет от 1 до 3 лет. Кроме того, при микроскопическом исследовании мазков крови R.C. Cabot описал наличие в некоторых эритроцитах колец либо овалов красно-фиолетового цвета,
Вероятнее всего являющимися остатками ядра (кольца Кебота). Неврологические проявления же в виде ощущения онемения и покалывания в конечностях обнаруживались практически у всех пациентов. Позже William Hunter отметил высокую частоту поражения языка (40%) у пациентов, описанных Cabot. Результаты исследования костного мозга F.W. Peabody свидетельствовали о нарушении образования красных клеток крови, то есть неэффективности гемопоэза [42].

Важный этап в изучении пернициозной анемии начался с исследований американского врача G.H. Whipple. Оценивая анемию у собак после кровопусканий и методы ее коррекции, он пришел к выводу, что употребление печени лучше всего восстанавливает уровень гемоглобина. К подобному выводу пришел и G.R. Minot, рекомендуя пациентам с анемией употребление красного мяса и печени. В 1923 году Minot G.R. совместно с W.P. Murphy проводили лечение 45 пациентов по разработанной методике с высокой эффективностью: ежедневный прием 100-240 г печени, 120 г красного мяса, зелени, фруктов, яиц, молока [50]. В 1934 году G.H. Whipple, G.R. Minot и W.P. Murphy были удостоены Нобелевской премии по физиологии или медицине за открытия, связанные с применением печени в лечении пернициозной анемии.

Успехи G.H. Whipple и G.R. Minot в лечении пернициозной анемии привели W.B. Castle к выводу, что в печени существует некий «внешний фактор», а в желудке – «внутренний фактор», а соединяясь, внешний и внутренний факторы способствуют кроветворению. В своих экспериментах он проводил забор желудочного сока здорового человека и вводил его в желудок пациентов с пернициозной анемией вместе с красным мясом, отмечая после этого увеличения количества эритроцитов [42]. Впоследствии исследования подтвердили продукцию в желудке особого белка, названного внутренним фактором или фактором Касла.

Еще один важный этап в исследованиях по изучению причин пернициозной анемии начался в середине XX века благодаря успехам химиков. В 1948 году две независимые группы ученых из США и Великобритании под руководством К.А. Folkers и E. Lester-Smith смогли выделить вещество красного цвета, которое

В 1958 году K.B. Taylor и J.A. Morton выявили в сыворотке у пациентов с пернициозной анемией антитела, которые блокировали соединение внутреннего и внешнего факторов Касла, приводя тем самым к нарушению всасывания витамина В12 [169]. Позже в сыворотке пациентов с пернициозной анемией также были выявлены антитела к париетальным клеткам желудка [97].

Таким образом, стало понятно, что пернициозная анемия, связанная с дефицитом витамина В12, является следствием аутоиммунного процесса, захватывающего тело желудка и приводящего к развитию атрофических изменений в слизистой оболочке и гипохлоргидрии. В настоящее время в отечественной литературе принят термин «аутоиммунный гастрит» (АИГ), однако за рубежом широко используется термин «пернициозная анемия», под которым имеют ввиду атрофический гастрит тела желудка аутоиммунной природы [111].

1.2. Распространенность аутоиммунного гастрита

Первые описания пернициозной анемии появились в странах Северной и Центральной Европы. В связи с этим сформировалось предположение о высокой распространенности АИГ именно в этом регионе. Однако по мере накопления наблюдений стало ясно, что АИГ не имеет четких географических привязанностей, а также расовых различий.

Больших популяционных исследований в отношении АИГ в настоящее время не проведено, в связи с этим статистические данные основываются на результатах
небольших выборок пациентов. Часто распространенность АИГ оценивается по его позднему проявлению – развитию В12-дефицитной анемии, что, однако, не отражает истинной распространенности АИГ [22].

Данные о распространенности АИГ сильно разнятся. Некоторые исследователи полагают, что АИГ является одним из наиболее частых аутоиммунных заболеваний: практически у 2% людей в популяции выявляются антитела к париетальным клеткам либо внутреннему фактору [62]. Хотя существуют свидетельства о более высокой распространенности АИГ. Так, например, результаты обследования 272 пациентов с диспепсией в Перу выявили, что у 12% есть иммунологические маркеры АИГ [109]. Распространенность АИГ среди доноров в США составила 5% [96]. Однако некоторые исследователи полагают, что в целом распространенность АИГ в популяции не так уж и велика – от 0,13% [111] до 1,1% [171].

В странах Центральной и Северной Европы не отмечено высокой распространенности АИГ, как полагалось ранее. Согласно проведенному в Дании исследованию на 2006 год распространенность АИГ составляет 0,37 на 1000 населения [69]. Однако различий по распространенности антител к париетальным клеткам у жителей Германии и Японии не получено [98]. Результаты оценки ежегодной заболеваемости в США свидетельствует о появлении 9 новых случаев АИГ на 100,000 населения в год [111]. Риск заболеть в течение жизни, например, в Дании составил 0,54 на 1000 населения [68].

Единичные исследования по изучению распространенности АИГ среди представителей различных рас были проведены в США. Среди 156 пациентов с пернициозной анемией: 73 пациента были европейского происхождения (46,8%), 52 – афроамериканцев (33,3%) и 31 латиноамериканец (19,9%) [48]. Однако другие авторы не подтверждают наличие расовых различий.

Известно, что аутоиммунными заболеваниями чаще страдают женщины [68, 85]. То же касается и АИГ [68, 111]. Так, в Дании женщины составляют около 70% всех пациентов с АИГ [68]. В Калифорнии же среди лиц старше 60 лет распространенность АИГ составляет 1,9%, при этом среди женщин данной
возрастной группы - 2,7%, а среди мужчин - 1,4% [111]. Таким образом, соотношение мужчин и женщин в среднем составляет 1:1,7-2.

По результататам статистических исследований с возрастом частота аутоиммунного гастрита возрастает. Согласно обзору В.Н. Toh, антитела к париетальным клеткам выявлены у 3% среди 30-летних, а у 80-летних этот показатель составил 10% [172]. Общую тенденцию по увеличению распространенности АИГ с возрастом поддерживают и другие авторы [96].

Более высокую распространенность АИГ выявляют у родственников пациентов с пернициозной анемией. Так, было показано, что у 19,3% родственников первой степени родства пациентов с пернициозной анемией выявлялись антитела к париетальным клеткам [183]. Был определен риск АИГ у родителей и сибсов пациентов: ОШ у родителей составило 12,5, а у сибсов – 57,4 [68].

В настоящее время подтверждено, что распространенность АИГ без клинических проявлений в популяции выше, чем распространенность В12-дефицитной анемии. Например, в Китае среди 28 пациентов с АИГ было выявлено лишь 20 случаев пернициозной анемии [192]. Подобные результаты получены и в скандинавских странах: при обследовании 86 пациентов с АИГ у 69 из них выявлена пернициозная анемия (80,2%) [43]. Таким образом, термины «аутоиммунный гастрит» и «пернициозная анемия» не тождественны. Первое отражает аутоиммунный механизм развития патологических явлений в слизистой оболочке тела желудка, тогда как второе – развитие позднего осложнения, клинически выраженный дефицит витамина В12.

Таким образом, истинная распространенность АИГ в популяции в настоящее время не известна. Большинство результатов основываются на исследованиях по распространенности последствий атрофического гастрита тела желудка: дефицита витамина В12 и мегалобластной анемии. Отмечено, что чаще аутоиммунный гастрит встречается у женщин и у лиц пожилого возраста.

1.3. Сочетание различных заболеваний с аутоиммунным гастритом

Еще в 1881 году M. Charcot обратил внимание, что у пациентов с тиреоидитом часто встречается пернициозная анемия. Связь между заболеваниями щитовидной...
железы и АИГ также подтверждалась тем фактом, что были отмечены довольно частые семейные случаи сочетания тиреоидита и пернициозной анемии. В дальнейшем получены данные о возможных сочетаниях АИГ не только с патологией щитовидной железы, но и с другими аутоиммунными заболеваниями: витилиго, сахарный диабет 1 типа, первичный билиарный цирроз. Полагают, что сопутствующие аутоиммунные заболевания встречаются у пациентов с АИГ довольно часто, по некоторым данным у 17,9% пациентов [24]. Согласно результатам наблюдений С.Hershko, патология щитовидной железы встречается у каждого пятого пациента с АИГ, в то время как сахарный диабет выявляется у 8%, витилиго – у 1,3% [90]. Были рассчитаны отношения шансов наличия второго аутоиммунного заболевания у пациентов с пернициозной анемией. Наибольшие риски были у целиакии (ОШ 22,6), витилиго (ОШ 21), заболеваний надпочечников (ОШ 11,7), системной красной волчанки (ОШ 7,8), тиреоидита (ОШ 5,6), синдрома Шегрена (ОШ 4,9) [68]. В корейской популяции также отмечается тенденция к высокой распространенности сочетаний аутоиммунных заболеваний у пациентов с АИГ [158]. Представляется, что у пациентов с сахарным диабетом 1 типа или аутоиммунными заболеваниями щитовидной железы пернициозная анемия встречается в 3-5 раз чаще, чем в популяции [62].

Распространенность аутоиммунного гастрита среди пациентов с заболеваниями щитовидной железы составляет в среднем 20-30% [81, 83, 129, 175, 185]. Интересно отметить, что антитела к париетальным клеткам выявляются даже у детей с аутоиммунными заболеваниями. Например, по результатам исследований в Италии, у 30% детей с диффуznым токсическим зобом имелись иммунологические маркеры АИГ [154].

Предполагают, что распространенность аутоиммунного гастрита у пациентов с сахарным диабетом 1 типа выше, чем в популяции [20], по некоторым данным в 3-5 раз [62]. Согласно проведенным исследованиям распространенность АИГ среди пациентов с сахарным диабетом 1 типа составляет от 12% [19] до 20% [60, 63].

К концу XX века накопились наблюдения о сочетании АИГ и аутоиммунных заболеваний печени, чаще всего первичного билиарного цирроза [28, 165]. В 2010
году были опубликованы результаты большого исследования по распространенности АИГ среди пациентов с различными заболеваниями печени. Наибольшее количество пациентов с положительными антителами к париетальным клеткам у больных выявлено в группе больных с первичным билиарным циррозом (31,8%) в сравнении с аутоиммунным гепатитом (10,9%; \(p=0,001 \)), первичным склерозирующим холангитом (0%; \(p=0,000 \)), вирусным гепатитом С (13,5%; \(p=0,01 \)), вирусным гепатитом В (13,3%; \(p=0,006 \)), алкогольной болезню печени (8,3%; \(p=0,004 \)), неалкогольной жировой болезнью печени (11,4%; \(p=0,003 \)) и здоровых добровольцев (10,4%; \(p=0,001 \)) [115].

Исследователи из Испании обнаружили, что среди пациентов с витилиго отмечена высокая распространенность АИГ: антитела к париетальным клеткам выявлены у 14,4% пациентов в изучаемой группе, что было достоверно выше, чем у пациентов без витилиго (\(p=0,0057 \)). В Канаде у 1,3% пациентов с витилиго выявлена пернициозная анемия, что было достоверно больше, чем в популяции [149]. А по результатам исследования из Дании пернициозной анемией страдали 3,7% пациентов с витилиго хотя распространенность пернициозной анемии в данной популяции составляет 0,13%. Среди пациентов с пернициозной анемией у 10,6% выявлена витилиго [86]. Отмечено также, что и у родственников первой линии пациентов с витилиго частота пернициозной анемии значительно выше, чем в популяции [18].

Высокую частоту сочетания синдрома Шегрена и аутоиммунного гастрита показало исследование, проведенное группой ученых из Глазго: у половины пациентов был обнаружен АИГ [41]. Кроме того, описаны случаи сочетания АИГ и ревматоидного артрита [121], системной красной волчанки [137]. В Польше показана высокая распространенность пернициозной анемии у пациентов с болезнью Аддисона [104].

Интересно отметить, что у пациентов с одним аутоиммунным заболеванием высок риск развития другого заболевания с аутоиммунным механизмом развития [55]. Например, описаны случаи развития аутоиммунного гепатита и аутоиммунного гастрита у пациента с сахарнымдиабетом 1 типа [61].
пернициозной анемии у пациента с аlopeцией и сахарным диабетом 1 типа [176]. Подобные наблюдения дали основания для объединения нескольких аутоиммунных заболеваний в синдромы. Так, был сформирован синдром множественных аутоиммунных заболеваний (multiple autoimmune syndrome, MAS), который представляет собой сосуществование трех и более аутоиммунных заболеваний [55]. Патогенез MAS не известен. Наиболее вероятным предполагается механизм влияния факторов внешней среды у генетически предрасположенных лиц. К первому типу MAS относят сосуществование миастении, тимомы, полимиозита и гигантоклеточного миокардита. Во второй тип включают синдром Шегрена, ревматоидный артрит, первичный билиарный цирроз, системную склеродермию и аутоиммунные заболевания щитовидной железы. АИГ относят к третьему типу, куда так же входят аутоиммунные заболевания щитовидной железы, миастению и/или тимому, синдром Шегрена, идиопатическая тромбоцитопеническая пурпура, болезнь Аддисона, сахарный диабет 1 типа, витилиго, аутоиммунная гемолитическая анемия, системная красная волчанка и герпетиформный дерматит. Однако за счет множества вариантов комбинаций аутоиммунных заболеваний достоверных статистических данных о подобных сочетаниях в настоящее время нет.

1.4. Этиология и патогенез аутоиммунного гастрита

Аутоиммунная природа пернициозной анемии начала изучаться в середине XX века [118]. Благодаря развитию электронной микроскопии, морфологических и иммуногистохимических методик выявлено, что антитела при АИГ направлены против H⁺/K⁺-АТФазы (протонной помпы) париетальных клеток. Это было подтверждено и в экспериментальных моделях [16, 150]. В настоящее время этиология АИГ остается не до конца ясной. Предполагается наличие генетической предрасположенности. Особое внимание привлекает инфекция Helicobacter pylori, которая, по мнению некоторых исследователей, может приводить к образованию аутоантител.
1.4.1. Генетические особенности пациентов с аутоиммунным гастритом

Предположения о наличии генетических особенностей у пациентов с АИГ основывались на описаниях семейных случаев пернициозной анемии [31, 45, 82, 182] и сочетаниях различных аутоиммунных заболеваний. Первые исследования появились в 70-х годах XX века, они касались генов главного комплекса гистосовместимости HLA. Так, I. Chanarin с соавт. в 1976 году опубликовал результаты своих работ, согласно которым выявлена связь между пернициозной анемией и HLA-A3 типа, а также отсутствие связи с HLA-A2 [51]. Однако уже в 1977 году другая группа ученых, исследуя генотипы пациентов с АИГ, не выявила ассоциации HLA-A или B генов у пациентов с этим заболеванием [189]. В дальнейшем при изучении большой группы пациентов с пернициозной анемией (более 100 больных) в Австралии отмечено, что относительный риск наличия пернициозной анемии у пациентов с HLA-B12 составлял 1,6, а для HLA-B18 – 3,6. Кроме того, у пациентов с пернициозной анемией и сопутствующими эндоцринными заболеваниями чаще выявлялись HLA-B7 и HLA-B12 [177].

Некоторые исследователи отмечают, что АИГ и пернициозная анемия чаще встречается у людей со светлой кожей и голубыми глазами [105]. Результаты обследования моноцитотных близнецов свидетельствуют о том, что кроме генетической предрасположенности, вероятно, есть какой-то дополнительный фактор, который позволяет реализоваться аутоиммунным механизмам.

Множество исследований проведено в скандинавских странах, где предполагалась высокая заболеваемость аутоиммунным гастритом. В Финляндии проведена попытка оценки полиморфизма генов, кодирующих альфа и бета субъединицу H+/K+-ATФазы, однако взаимосвязей с развитием АИГ выявлено не было [135]. Отмечена высокая частота аллеля HLA DRB1*04 у пациентов с аутоиммунным гастритом (58%), в то время как в целом в финской популяции его частота составляет 28% (p=0,045). Кроме того, выявлено, что HLA DQB1*03 встречается у 83% больных, в популяции же его частота составляет 51% (p=0,034). У 50% пациентов определялся аллель DQB1*0302, хотя в целом его распространенность составляет 13% (p=0,005). Что же касается полиморфизма
генов IL-1, IL-2, IL-4, IL-6, IL-10, IL-12, IFN\(\gamma\), TGF\(\beta\), TNF\(\alpha\) и KIRs, то они статистически не отличались от таковой в популяции [134]. Высокую частоту HLA-DRB1*03 и DRB1*04 отмечают не только у больных с аутоиммунным гастритом, но также и у пациентов с аутоиммунными заболеваниями щитовидной железы, и сахарным диабетом 1 типа [111].

В настоящее время генетические исследования у пациентов с аутоиммунным гастритом единичны и бессистемны. Кроме того, они не объясняют этиологию заболевания.

1.4.2. Роль инфекции Helicobacter pylori в развитии аутоиммунного гастрита

В конце XX века появилось множество исследований, в которых обсуждалась роль инфекции Helicobacter pylori как возможного инициатора аутоиммунного гастрита с развитием атрофии слизистой оболочки тела желудка [133, 184]. В первую очередь, это было обусловлено широкой распространенностью этой инфекции.

Первые исследования о наличии взаимосвязей между инфекцией и аутоиммунным гастритом основывались на статистических данных о распространенности H.pylori у лиц с пернициозной анемией. Складывалось впечатление, что лишь у небольшого числа пациентов с АИГ имела место инфекция H.pylori: от 3% [78] до 17,5% [36]. Причем исследователи отмечают, что эти показатели были достоверно ниже, чем в целом в популяции [79]. В дальнейшем стала очевидной разница в инфекрировании H.pylori у пациентов с различной степенью атрофических изменений слизистой оболочки желудка. Так, например, продемонстрировано, что у пациентов с пернициозной анемией и тяжелой атрофией в теле желудка колонизация инфекцией H.pylori не выявлена, в то время как у 22,5% пациентов с менее выраженной атрофией H.pylori обнаруживался в теле желудка [160]. Аналогичные результаты были получены и в Японии [87]. Таким образом, сформировалось предположение о том, что H.pylori может инициировать аутоиммунный процесс в слизистой оболочке желудка, однако по мере прогрессирования атрофических изменений и развитии гипосекреции соляной кислоты инфицированность H.pylori снижается [140].

Интересными представляются результаты распространенности аутоиммунного гастрита среди пациентов с инфекцией *H. pylori*. Если предполагать тригерную роль *H. pylori* в развитии АИГ, то ожидаемой будет высокая распространенность антител к париетальным клеткам у больных с *H. pylori*. Большое исследование по сопоставлению пациентов с *H. pylori* в Германии и Японии не выявило разницы по распространенности АИГ, несмотря на значимые различия в распространенности самой инфекции *H. pylori*: 70% среди японцев и 37% среди немцев [98]. Аналогичные результаты были получены и в Италии: антитела к париетальным клеткам выявлены у 61,1% пациентов с *H. pylori* и у 69,4% пациентов без инфекции, разница между ними не достоверна [25]. Исследователи из Турции также подтверждают отсутствие различий распространенности антител к париетальным клеткам у больных с *H. pylori* и у здоровых людей [54, 75, 108].
клеткам: 13,4% у H.pylori-позитивных пациентов и 14,6% у пациентов без H.pylori [73]. Таким образом, несмотря на различную инфицированность H.pylori в разных популяциях, исследователи не выявили большей распространенности АИГ среди лиц с H.pylori.

При уменьшении распространенности инфекции H.pylori в популяции ожидаемым будет и уменьшение распространенности АИГ. Наиболее показательными в данном аспекте являются результаты исследований из стран Юго-Восточной Азии и Японии, где проводятся обширные программы по профилактике рака желудка и эрадикации H.pylori: не отмечено уменьшения распространенности АИГ после эрадикационной терапии [146].

Противоположные результаты были получены в скандинавских странах. У пациентов с аутоиммунным гастритом и тяжелыми атрофическими изменениями слизистой оболочки желудка признаки инфекции H.pylori выявлялись в 12 случаях из 14 [184]. Что по мнению исследователей может косвенно подтверждать этиологическую роль H.pylori в аутоиммунном поражении слизистой оболочки тела желудка.

Таким образом, в настоящее время участие H.pylori в патогенезе аутоиммунного гастрита остается под сомнением [111], что подтверждается порой противоположными результатами проводимых исследований.

1.4.3. Особенности иммунного ответа при аутоиммунном гастрите

Первые результаты исследований об особенностях иммунного ответа у пациентов с АИГ появились в конце 90-х годов XX века. Было показано, что в слизистой оболочке желудка при АИГ возрастает количество T-лимфоцитов, однако соотношение T-супрессоров и T-хелперов остается нормальным [105]. В этой работе впервые было высказано предположение о том, что антитела могут нарушать созревание и пролиферацию париетальных клеток. Эти данные были подтверждены и позднее [179].

Группа ученых под руководством В.Н. Тоh в Австралии в течение уже 30 лет изучает особенности иммунного ответа при АИГ как у человека, так и в экспериментальных моделях. Первые данные их исследований свидетельствовали
о том, что в развитии воспаления в слизистой оболочке желудка основную роль играют CD4+ лимфоциты (T-хелперы), так как уменьшение их содержания в экспериментах приводило к уменьшению количества мононуклеарных инфильтратов с 63% до 8% [64]. И хотя экспериментальные модели (мыши) не дают полных ответов, впоследствии было установлено, что механизмы разрушения париетальных клеток могут включать в себя активацию белков, приводящих к апоптозу, таких как Fas/FasL и TNF/TNFR [17].

Полобные данные были получены и в Европе. В моделях in vitro большинство (88%) активированных CD4+ клеток слизистой оболочки пациентов с АИГ секретировали цитокины профиля Th1. И лишь некоторые секретировали и Th1 и Th2 [34, 66]. Практически все клетки секретировали TNFα, а большинство из них проявляло перфорин-опосредованную цитотоксичность и индуцировало Fas/FasL – опосредованный апоптоз. Позже были получены данные о высокой секреции CD4+ клетками IFNγ, что также подтверждало развитие реакций профиля Th1 [65].

Таким образом, в настоящее время патогенез АИГ предполагает развитие у лиц с генетическими предпосылками под воздействием внешних факторов (возможно, H. pylori) развитие комплекса иммунных реакций, преимущественно опосредованных T-хелперами 1 типа, приводящих к активации апоптоза париетальных клеток, скорее всего через Fas/FasL систему.

1.5. Диагностика аутоиммунного гастрита

Кроме того, при серологическом исследовании были обнаружены антитела к внутреннему фактору (фактору Касла), которые также являются причиной развития пернициозной анемии [152, 168]. Результаты ранних исследований свидетельствовали о высокой распространенности АПК у пациентов с мегалобластной анемией и гораздо более низкой распространенностью антител к внутреннему фактору. Так, например, у 100% пациентов с выраженным дефицитом витамина B12 обнаружены АПК, в то время как антитела к внутреннему фактору – лишь у половины больных [161]. Таким образом, предполагается, что наиболее подходящий тест при подозрении на аутоиммунный гастрит - исследование антител к париетальным клеткам, а исследование антител к внутреннему фактору служит дополнительным тестом [107]. Интересны результаты исследований по определению чувствительности и специфичности аутоантител при аутоиммунном гастрите. Большей чувствительностью обладают АПК: 68-81%, в то время как чувствительность антител к внутреннему фактору составляет 27-40%. Специфичность же для АПК достигает 90-91%, а для антител к внутреннему фактору – 98-100%. Найлучшие результаты были получены при комбинации этих антител: чувствительность составила 73-86% и специфичность - 90-100% [111, 113, 153].

В 1987 году для определения антител к париетальным клеткам в сыворотке крови было предложено применять иммуноферментный анализ (ИФА, ELISA) вместо иммунофлуоресцентного метода [103]. Обе методики показали примерно одинаковые результаты [163]. Тем не менее некоторые исследователи полагают, что ELISA является более чувствительной методикой при определении антител к париетальным клеткам [173]. В дальнейшем исследование уровня АПК вошло в арсенал методик для определения причин атрофических изменений в теле желудка [142].

1.5.1. Серологическая диагностика атрофических изменений слизистой оболочки желудка

Известно, что аутоиммунный гастрит зачастую диагностируется на поздней стадии – стадии атрофических изменений слизистой оболочки желудка. «Золотым
стандартом» диагностики в данном случае является проведение морфологического исследования. Однако ввиду наличия возможных противопоказаний к проведению эзофагогастродуоденоскопии, осложнений, высокой стоимости исследования, были созданы неинвазивные методики для обнаружения патологии желудка. В настоящее время в качестве серологической диагностики атрофических изменений слизистой оболочки широко применяются несколько маркеров: пепсиноген I, пепсиноген II и гастрин-17.

Пепсиногены группы I (PG I) секретируются только главными и слизистыми шеечными клетками слизистой тела и дна желудка. Пепсиногены группы II (PG II) секретируются главными клетками, находящимися во всех отделах желудка и бруннеровыми железами двенадцатиперстной кишки.

Гастрин представляет собой полипептид, секретируемый в двух основных формах: гастрин-34, содержащий 34 аминокислоты, и гастрин-17, содержащий 17 аминокислот. Гастрин-34 синтезируется в основном поджелудочной железой, тогда как гастрин-17 - в основном желудком. Угнетается секреция гастрона высоким уровнем соляной кислоты в желудке по механизму отрицательной обратной связи [5].

Предполагается, что пепсиноген I служит маркером изменений в теле желудка: он уменьшается при развитии атрофии и увеличивается при активном воспалении. Пепсиноген II считается показателем состояния антрального отдела желудка: он также уменьшается при развитии атрофии и увеличивается при активном воспалении. Кроме того, в качестве маркера возможно использование гастрона-17, уровень которого повышается при угнетении секреции соляной кислоты, то есть вследствие развития атрофических изменений слизистой оболочки тела желудка. Снижения его уровня можно ожидать при гиперсекреции соляной кислоты и выраженной атрофии слизистой оболочки антрального отдела желудка.

Первые результаты исследований по изучению маркеров атрофических изменений появились в конце 80-х годов XX века. Они свидетельствовали о том, что у пациентов с пернициозной анемией выявляется низкий уровень пепсиногена I, снижение отношения пепсиногена I к пепсиногену II, а также повышается
уровень гастрина [46]. Причем отмечено, что совместное исследование пепсиногена I и гастрина и соответствующая их динамика были высоко специфичными (100%) именно для АИГ [183].

Дальнейшие исследования выявили, что большей специфичностью для атрофических изменений в теле желудка обладает значение отношения пепсиногена I к пепсиногену II (пепсиноген I/II) в сравнении с собственно значениями пепсиногена I [136, 164, 166]. Так, по данным работ из Китая чувствительность и специфичность пепсиногена I составила 67% и 76% соответственно, в то время как чувствительность и специфичность отношения пепсиноген I/II - 89% и 83% [190]. Подобные результаты получены и в Корее: чувствительность и специфичность определения отношения пепсиногена I/II была 82,6% и 91,7% соответственно. [49]. В настоящее время исследование пепсиногенов в Японии с целью выявления атрофического гастрита является скрининговым тестом [123].

В Финляндии был разработан комплекс лабораторных исследований крови GastroPanel (Гастропанель), который включает в себя определение пепсиногена I, пепсиногена II, гастрина-17, IgG к H. pylori. Чувствительность тест-системы Гастропанель для диагностики патологии желудка составляет 95%, а специфичность – 93% [95]. В настоящее время этот комплекс широко применяется для серологической диагностики атрофических изменений слизистой оболочки тела желудка.

1.5.2. Диагностика дефицита витамина В12

Дефицит витамина В12 – типичное проявление АИГ. Чаще всего для диагностики используется исследования уровня кобаламина в сыворотке крови. Отмечено, что даже при наличии нормальных показателей сывороточного витамина В12 может наблюдаться клиническая картина дефицита кобаламина: неврологическая симптоматика, изменения характера кроветворения. В связи с этим некоторые исследователи рекомендовали рассматривать субнормальные показатели кобаламина как низкие, пока не доказано обратное, в целях ранней диагностики пернициозной анемии [47].

В середине 90-х годов XX века появились первые данные о наличии взаимосвязи между уровнем витамина B12 и показателями гомоцистеина и метилмалоновой кислоты [116]. Было выявлено, что имеет место обратная корреляция между содержанием витамина B12 и содержанием метилмалоновой кислоты и гомоцистеина в сыворотке крови [30, 155]. Некоторые исследователи рекомендуют подтверждать дефицит витамина B12 с помощью определения данных метаболитов [102].

Интересно, что разницу в распространенности дефицита витамина B12 по данным различных авторов связывают именно с различными подходами к выявлению недостаточности кобаламина. В связи с этим пациентам с «субнормальными» значениями уровня сывороточного витамина B12 (менее 220 пмоль/л) для выявления метаболического дефицита рекомендуют определения метилмалоновой кислоты [92, 94, 114].
Однако в настоящее время эти дополнительные маркеры используются в основном при проведении научных исследований, несмотря на их высокую чувствительность при выявлении дефицита витамина B12.

1.6. Клиническая картина аутоиммунного гастрита

Изучение аутоиммунного гастрита началось с изучения его поздних осложнений: мегалобластной B12-дефицитной анемии, а также сопутствующей неврологической патологии. До появления симптомов дефицита кобаламина АИГ себя практически никак не проявляет [96]. Следовательно, до момента установления диагноза может пройти от 10 до 30 лет после начала заболевания [22, 193].

Витамин B12 синтезируется бактериями. В печени существует депо кобаламина - около 1,5 г. Этих запасов хватает на 5-10 лет [22]. В настоящее время полагают, что дефицит кобаламина встречается довольно часто, особенно среди лиц пожилого возраста, однако лишь у 5-10% пациентов с дефицитом витамина B12 развиваются характерные клинические симптомы [114]. Типичной считается триада: макроцитарная анемия, нейропсихиатрические нарушения и глюссит [114, 131]. Однако зачастую даже она упускается из виду [114]. При анализе пациентов с дефицитом витамина B12 в Корее (более 400 больных) были выявлены следующие жалобы: слабость (66%), болезненность языка (53,6%), отсутствие аппетита (42,3%), ощущение онемения в конечностях (37,1%), одышка (36,1%), головокружение (33%), потеря веса (20,6%), нарушения памяти (4,1%), диарея (2,0%), желтуха (1,0%). Чаще всего выявлялись симптомы анемии (79,4%), гастроэнтерологические жалобы выявлены у 78,4% больных, неврологические – у 38,1% [158]. Несколько другой спектр жалоб у больных в Марракеше: бледность выявлена у 97,5% пациентов, жалобы со стороны сердечно-сосудистой системы – у 46% пациентов, со стороны пищеварительной системы – у 34,7%, неврологические нарушения отмечены у 17,3% пациентов [126]. Результаты исследований из Франции свидетельствуют о том, что лишь у 76% пациентов с дефицитом витамина B12 выявляются гематологические нарушения [23].
Характерные неврологические симптомы без явлений анемии выявляются гораздо реже: лишь у 30% пациентов [22].

Обычный для стран Европы и США рацион содержит 3-30 мкг/сут кобаламина, рекомендованная же суточная доза для взрослых составляет 2,4 мкг/сут. Пепсин и соляная кислота в желудке расщепляют животные белки, высвобождая кобаламин из продуктов питания. Большая часть кобаламина присоединяется к R-белку, который вырабатывается клетками тела желудка. Внутренний фактор секретируется в желудке, однако его связь с кобаламином в присутствии R-протеина практически невозможна. В двенадцатиперстной кишке с помощью желчи и секрета поджелудочной железы R-протеин отделяется от кобаламина, который в свою очередь соединяется с внутренним фактором. Комплекс кобаламин-внутренний фактор достигает дистальных отделов тонкой кишки, где взаимодействует с рецептором на поверхности энтероцитов (кублином) и витамин B12 попадает в клетку. Альтернативный путь не зависит от внутреннего фактора: около 1-5% кобаламина всасывается путем пассивной диффузии. Далее кобаламин присоединяется к транспортным белкам: транскобаламинам I, II и III. Транскобаламин II составляет всего лишь 10% от транскобаламинов, однако выполняет очень важную роль: переносит кобаламин к клеткам. Путем эндоцитоза клетка поглощает комплекс транскобаламин II-кобаламин, далее высвобождается собственно кобаламин и превращается в две формы: метилкобаламин и аденозилкобаламин [84].

Метилкобаламин является кофактором метионинсинтазы, которая обеспечивает превращение гомоцистеина в метионин в цитозоли клеток. Если этот процесс нарушается, страдает метаболизм тимидина, что и приводит к нарушению синтеза ДНК и мегалобластному кроветворению. Аденозилкобаламин транспортируется в митохондрии, где вместе с метилмалонил-КоА-мутазой обеспечивает превращение метилмалонил-КоА в суцицил-КоА. При недостатке аденозилкобаламина развивается поражение нервных волокон [80].
1.6.1. В12-дефицитная анемия

Недостаток метилкобаламина приводит к нарушению синтеза тимидина, включаемого в ДНК. В итоге клетки костного мозга утрачивают способность к нормальному созреванию. Особенно выражены нарушения со стороны красного кроветворного ростка. Мегалобластный эритропоэз характеризуется задержкой созревания ядер эритрокариоцитов и деления клеток, в то время как цитоплазма созревает нормально. В итоге клетки становятся крупными, с повышенным содержанием рибонуклеиновой кислоты по отношению к дезоксирибонуклеиновой кислоте. Измененные таким образом клетки - предшественники эритроцитов (мегалобLASTы) разрушаются, большей частью прямо в костном мозге (до 50%), потому при повышенной клеточности костного мозга продукция эритроцитов в целом снижается. Это явление известно, как неэффективный эритропоэз [13].

Клинически мегалобластная анемия проявляет себя, как анемии других этиологий: слабость, быстрая утомляемость, головокружение, головные боли, шум в ушах, «летающие муши» в глазах, одышка и сердцебиение при физической нагрузке, сонливость в течение дня [33, 53]. Однако встречается и более злокачественное течение в виде эпизодов резкого снижения артериального давления и усугубления застойной сердечной недостаточности [33]. Именно поэтому В12-дефицитная анемия и получила свое название – пернициозная (от лат. perniciosus — гибельный, опасный). Внешне определяется бледность кожных покровов и слизистых, однако часто встречается и легкая желтушность с лимонно-желтым оттенком [13].

В клиническом анализе крови выявляются следующие характерные черты: гиперхромия (повышение насыщения гемоглобином) и макроцитоз эритроцитов (диаметр более 10-12 мкм, объем более 95 мкм³), анизоцитоз (разная величина эритроцитов, наряду с макроцитами имеются эритроциты нормальных размеров), пойкилоцитоз (изменение формы эритроцитов).

Во многих макроцитах обнаруживаются остатки ядра (тельца Хауэлла-Жолли, кольца Кебота), возможно наличие базофильной пунктиров (остатки рибосом) [13, 22, 23].
Кроме того, могут выявляться лейкопения, гиперсегментация ядер нейтрофилов, тромбоцитопения и панцитопения. В случае тяжелой мегалобластной анемии панцитопения встречается у 17-37% пациентов, лейкопения у 29-45% больных [126, 158]. В отсутствии лечения анемия носит гипорегенераторный характер, то есть количество ретикулоцитов снижено. В биохимическом анализе крови выявляются признаки гемолиза: повышение уровня лактатдегидрогеназы, непрямого билирубина, снижение гаптоглобина [22].

В настоящее время классические проявления В12-дефицитной анемии встречаются редко, а дефицит кобаламина выявляется на ранних этапах. Однако есть данные о развитии метаболического дефицита витамина В12 при его нормальных значениях в сыворотке крови [47]. В связи с этим многие исследователи оценивали не только показатели гемоглобина, но и характеристики самих эритроцитов (объем эритроцита и насыщение его гемоглобином). Так, например, среди 28 пациентов с АИГ было выявлено 18 случаев мегалобластной анемии, а у 2 пациентов собственно гемоглобин снижен не был, хотя отмечался макроцитоз эритроцитов [192]. Исследователи из Нидерландов изучали группу пациентов с низким уровнем кобаламина. Несмотря на то, что гематологические проявления дефицита витамина В12 выявлены у всех пациентов, случаев анемии не зарегистрировано [178]. Подобную тенденцию отметили авторы из Испании: у 60% пациентов с макроцитозом не выявляется анемии [53]. Некоторые авторы характеризуют подобное состояние как «латентная» пернициозная анемия [19].

Отсутствие макроцитоза при дефиците кобаламина может быть связано с сопутствующим дефицитом железа [22, 47]. Исследователи из Израиля при изучении группы пациентов с аутоиммунным гастритом выявили, что низкий уровень кобаламина был выявлен у всех пациентов с макроцитозом, 92% пациентов с нормоцитозом и 46% с микроцитозом. Дефицит железа отмечался у 50% пациентов с нормоцитозом и 10% пациентов с макроцитозом. Таким образом, у большинства пациентов с АИГ наблюдался комбинированный дефицит железа и цианокобаламина [90].
1.6.2. Дефицит железа у пациентов с аутоиммунным гастритом

Желудок играет важную роль в метаболизме железа. Железо, поступающее с пищей, находится в форме гемового железа (10%) и негемового (90%). Негемевое железо представляет собой преимущественно окисленную форму (Fe$^{3+}$), которая имеет малую биодоступность из-за низкой растворимости. Для транспорта через мембрану энтероцитов двенадцатиперстной кишки необходимо железо в форме Fe$^{2+}$. Превращение Fe$^{3+}$ в Fe$^{2+}$ происходит в желудке благодаря воздействию соляной кислоты [125, 187]. В связи с этим атрофический гастрит тела желудка рассматривается как возможная причина дефицита железа [35, 56, 100].

Дефицит железа и микроцитарная анемия может быть самостоятельным проявлением аутоиммунного гастрита [3, 4, 111]. Были проведены исследования по изучению причин дефицита железа среди пациентов с анемией неясной этиологии: на долю АИГ приходится 20-27% [88, 122], что в 4-6 раз превышало участие целиакии в развитии дефицита железа [89]. Чаще пациенты с микроцитарной анемией – женщины репродуктивного возраста [89, 122]. Стоит отметить, что у этих больных отмечается рефрактерность к терапии пероральными препаратами железа (71%) [88]. Клинически дефицит железа дополняет картину анемии следующими симптомами: сухость, шелушение кожи, ломкость и выпадение волос, истончение, ломкость и поперечная исчерченность ногтей, койлонихии.

Однако чаще всего дефицит железа сопутствует дефициту витамина B12, что подтверждается отсутствием у пациентов с дефицитом кобаламина макроцитоза [47, 53]. Таким образом, авторы делают вывод, что железодефицитную анемию можно расценивать как наиболее частое проявление аутоиммунного гастрита.

1.6.3. Неврологические проявления дефицита витамина B12

Дефицит аденозилкобаламина ведет к значительному повышению содержания в тканях метилмалонил-КоА и его предшественника - пропионил-КоА. В результате в нервных клетках синтезируются и встраиваются в липиды жирные кислоты не с четным числом атомов углерода, как обычно, а с нечетным. Это одна из возможных причин поражения нервной системы при дефиците витамина B12. Кроме того, при нарушении образования метионина из гомоцистеина возникает дефицит активного
метионина (S-аденозилметионина) и нарушается синтез холина и содержащих холин фосфолипидов - лецитина и сфингомиелина, необходимых для формирования оболочек нервных волокон. Наступает демиелинизация, а затем дегенерация нервных волокон преимущественно в задних и боковых столбах спинного мозга и спинномозговых нервов. Часто подобное поражение характеризуют как фуникилярный миелоз или подострый комбинированный склероз спинного мозга [13, 23].

Пациенты предъявляют жалобы на слабость в ногах, особенно при подъеме по лестнице, при быстрой ходьбе, ощущение ползания мурашек по ногам, онемение ног. Больным кажется, что они не чувствуют при ходьбе опоры под ногами, что заставляет их неоднократно как бы «пробовать землю ногой». Указанные жалобы обусловлены нарушением проприоцептивной чувствительности [111]. При преобладании поражения задних столбов нарушается глубокая, пространственная, вибрационная чувствительность. Появляются сенсорная атаксия, затруднения при ходьбе, снижаются сухожильные рефлексы, наблюдается атрофия мышц нижних конечностей. При выраженном поражении задних столбов спинного мозга может наступить нарушение функции тазовых органов (недержание мочи, недержание кала). При преобладании поражения боковых столбов спинного мозга неврологическая симптоматика иная: развивается нижний спастический парапарез с резким повышением сухожильных рефлексов и тонуса мышц нижних конечностей, появлением патологических рефлексов Бабинского, Россолимо, Оппенгейма. Нарушение функции тазовых органов характеризуется задержкой мочеиспускания и дефекации. Реже наблюдаются поражения черепных нервов, главным образом зрительного, слухового и обонятельного, в связи с чем появляются соответствующие симптомы со стороны органов чувств (потеря обоняния, понижение слуха и зрения). Характерным симптомом является центральная ско- тома. У больных пернициозной анемией встречается и поражение периферического нейрона. Данная форма, обозначаемая как полиневретическая, обусловлена дегенеративными изменениями различных нервов — седалищного, срединного, локтевого или отдельных нервных веточек. Кроме того, при B12-дефицитной
анемии могут возникнуть психические расстройства: бред, галлюцинации, психозы, депрессия, деменция [10, 13, 22, 23].

Неврологические проявления дефицита витамина В12 встречаются не так часто: по данным различных исследователей от 10% до 46% [2, 22, 126, 158, 191]. Такой большой разброс может быть обусловлен слабой выраженностью симптомов (то есть они не принимаются в расчет или упускаются из виду) или особенностями методик выявления патологии нервной системы в различных исследованиях (опрос, выявление патологических рефлексов и оценка разных видов чувствительности, дополнительное инструментальное обследование). Некоторые авторы полагают, что патология нервной системы при дефиците витамина В12 без ярких клинических проявлений определяется у 30% еще до развития анемии [22, 102]. Одной из особенностей поражения нервной системы является необратимость некоторых проявлений [111]. В связи с чем рекомендуют проявлять настороженность в отношении дефицита кобаламина и предпринимать шаги к ранней его диагностике.

1.6.4. Другие проявления дефицита витамина В12

Одним из классических проявлений дефицита витамина В12 является поражение языка - глоссит Гунтера-Мюллера. Выражается он в появлении на языке ярко-красных участков воспаления, весьма чувствительных к приему пищи и лекарств, особенно кислых, вызывающих у больного чувство жжения и боли. Участки воспаления чаще локализуются по краям и на кончике языка, но иногда захватывают весь язык («ошпаренный язык»). Нередко на языке наблюдаются афтозные высыпания, иногда трещины. Подобные изменения могут распространяться на десны, слизистую щек, мягкого неба, а в редких случаях и на слизистую глотки и пищевода. В дальнейшем воспалительные явления стихают и сосочки языка атрофируются. Язык становится гладким и блестящим («лакированный язык») [10].

Некоторые исследователи выделяют у пациентов с аутоиммунным гастритом жалобы со стороны пищеварительного тракта: дискомфорт в эпигастральной области, чувство раннего насыщения, вздутие живота, тошнота, диарея, которые
связывают со сниженной секрецией соляной кислоты [23]. Распространенность этих жалоб у пациентов с поздними стадиями АИГ весьма различна: от 3% до 78% [111, 158].

Кроме того, в последние годы появились исследования, демонстрирующие наличие взаимосвязей дефицита витамина В12 и заболеваний сердечно-сосудистой системы (стенокардия, острый инфаркт миокарда и инсульт) [23, 131]. Некоторые авторы отмечают увеличение распространенности тромбоэмболических эпизодов у пациентов с дефицитом кобаламина: повторные выкидыши, венозные тромбозы, атеротромбоз [22, 23]. Как предполагается, связаны эти последствия с повышением уровня гомоцистеина. Благодаря такому широкому спектру клинических проявлений пернициозную анемию иногда именуют “great pretender” [22].

1.7. Патоморфология аутоиммунного гастрита

1.7.1. Основные механизмы регуляции функций слизистой оболочки желудка

С анатомической точки зрения в желудке выделяют кардиальный отдел, дно, тело желудка, антральный отдел и привратник. Слизистая оболочка в разных отделах желудка различается по строению [7, 12]. Микроскопически различают 3 зоны: кардиальную, фундальную и антральную (пилорическую). Эти зоны в основном соответствуют анатомическим отделам, однако полностью с ними не совпадают. Кроме того, границы между зонами нечеткие. Для каждой зоны характерны свои типы желез желудка [1, 7]. Основной зоной поражения при аутоиммунном гастрите является тело желудка.

Собственные (фундальные, главные) железы располагаются в дне и теле желудка и имеют трубчатую структуру. Состоит железа из дна, тела, шейки - выводного протока и устья. Среди клеточного состава собственных желез встречаются париетальные или обкладочные клетки, главные клетки (в области дна и тела железы), слизистые или добавочные клетки (тело и шейка) и эндокриноциты, секретирующие серотонин, мелатонин, гистамин (Рисунок 1).
Части железы:
I – дно
II – тело
III – шейка (выводной проток)
IV – устье

Секреторные клетки:
1 – париетальные (обкладочные) клетки
2 – главные клетки
3 – добавочные клетки
4 – эндокриноциты

Слизистые клетки (добавочные клетки, мукоциты) локализуются в шейке желез и имеются во всех отделах желудка. Эти клетки секретируют слизь. Очень важной функцией шеечных мукоцитов является обеспечение клеточного обновления в желудке. Они рассматриваются как камбиальные элементы эпителия желез и покровного эпителия, куда они, дифференцируясь, мигрируют [1, 6].

Главные клетки (зимогенные клетки, главные гландулоциты) — клетки слизистой оболочки желудка, секретирующие профермент пепсина - пепсиноген, желудочную липазу, устойчивую в кислой среде, а также профермент реннинга (химозина).

Париетальная клетка (обкладочная клетка) — клетка желудка, секретирующая соляную кислоту и внутренний фактор Касла. Основная роль внутреннего фактора Касла заключается в образовании с витамином В12 комплекса, который адсорбируется эпителиальными клетками подвздошной кишки. Секреция соляной кислоты париетальными клетками основана на трансмембранном переносе ионов водорода (протонов) и осуществляется специфическим протонным насосом — Н⁺/К⁺-АТФазой. Секреция соляной кислоты находится под контролем нейрогуморальной регуляции. К стимуляторам секреции относят n.vagus, гастрин и гистамин. Ингибиторами секреции соляной кислоты являются соматостатин и простагландины (простагландин Е).
Энтерохромаффиноподобные клетки (ЭХП-клетки или ECL-клетки) были обнаружены в 1960-х годах шведским исследователем R. Thunberg [170]. ЭХП-клетки лежат в глубине фундальных желез, а выделяемый ими гистамин стимулирует секрецию соляной кислоты париетальными клетками. ЭХП-клетки имеют мембранные рецепторы гастринна (ССК-В-рецепторы), воздействие которого увеличивает секрецию гистамина. Стимуляторами секреции гистамина является также ацетилхолин (n.vagus). Ингибиторами, тормозящими секрецию гистамина, являются соматостатин и гистамин [7, 9].

G-клетки желудка и двенадцатиперстной кишки вырабатывают гастрин нескольких изоформ. Через кровеносную систему гастрин или непосредственно воздействует на париетальные клетки, или опосредованно, через стимулирование выработки ECL-клетками гистамина и усиливает секрецию соляной кислоты и пепсиногена [5, 7].

Секреция гастринна повышается в ответ на холинергическую (n.vagus) и в меньшей степени на симпатическую стимуляцию желудка. Также секреция гастринна повышается инсулином, гистамином, наличием в желудке или в плазме крови олигопептидов и свободных аминокислот — продуктов расщепления белков. Секреция гастринна также повышается при гиперкальциемии. Угнетается секреция гастринна высоким уровнем соляной кислоты в желудке по механизму отрицательной обратной связи, простагландином Е, эндогенными опиоидами — эндорфинами и энкефалинами, аденозином, кальцитонином, холецистокинином и секретином. Сильно угнетает секрецию гастринна соматостатин (Рисунок 2).
Понимание механизмов нормальной регуляции кислотопродукции позволяет обосновать патологические изменения, происходящие по мере развития аутоиммунного гастрита.

1.7.2. Морфологические изменения при аутоиммунном гастрите

Первые морфологические исследования АИГ выявили истончение слизистой оболочки и уменьшение глубины желез [38, 39, 106]. Было отмечено, что у пациентов с пернициозной анемией рано появляется атрофический гастрит тела желудка, а также наблюдается его быстрое прогрессирование особенно после 50 лет [1, 106].

Еще в 1972 году R. Whitehead подчеркнул, что достаточно сложно разграничить поверхностный гастрит и начальные стадии атрофического гастрита. Однако по мере развития различных методов диагностики появились данные о начальных проявлениях АИГ еще до развития атрофических изменений в теле желудка. В

Лимфоидная инфильтрация слизистой оболочки тела желудка встречается на всех этапах развития патологических изменений при АИГ, что отражает его аутоиммунную природу [4, 52, 71, 160]. Часто встречаются лимфоидные фолликулы: до 50% наблюдений [147]. Предполагают, что при аутоиммунном гастрите происходит нарушение нормального строения и репарации слизистой оболочки, а не прямое повреждение уже созревших париетальных клеток [179].

По мере развития атрофии в теле желудка уменьшается продукция соляной кислоты, что сопровождается развитием патологических изменений в структурах, связанных с механизмами регуляции кислотопродукции. В отсутствие угнетающего действия HCl на G-клетки в антральном отделе желудка увеличивается секреция этими клетками гастринна и развивается гипергастринемия.
Некоторые авторы свидетельствуют даже о развитии гиперплазии G-клеток на фоне гипосекреции соляной кислоты [38, 52, 119].

Однако основное внимание при гипергастринемии приковано к ЭХП-клеткам, которые также имеют рецепторы к гастрину. Известно, что избыточное количество гастрина способствует пролиферации ЭХП-клеток и развитию их гиперплазии [38, 40]. По своей структуре выделяют линейную и микронодулярную гиперплазию, полагая что это последовательные этапы патологических изменений при гипергастринемии (Рисунок 4) [119, 191]. У некоторых пациентов возможно развитие карциноида – гормонально-активной опухоли из ЭХП-клеток [52, 112, 174]. Интересно, что сама гипергастринемия не приводит к трансформации гиперплазии ЭХП-клеток в карциноид [38]. Факторы, обеспечивающие такую трансформацию, в настоящее время не известны [40].

Карциноид при аутоиммунном гастрите в подавляющем большинстве случаев протекает бессимптомно, в связи с этим чаще всего является случайной находкой при морфологическом исследовании. Более того, согласно проведенным исследованиям, при АИГ карциноиды множественные и имеют небольшие
размеры (до 1 см) [22]. Распространенность карциноида среди пациентов с АИГ составляет 3-7% [22, 144].

Поражение слизистой оболочки при АИГ предполагается только в рамках тела желудка. Однако результаты морфологических исследований свидетельствуют о частом вовлечении антрального отдела преимущественно в виде хронического гастрита (лимфоплазмоцитарная инфильтрация слизистой оболочки) [106]. У 36% пациентов с АИГ в странах Европы выявляются изменения в антральном отделе, в США несколько чаще – у 50% больных [78, 79]. Самые высокие показатели в Японии: у 71% пациентов с пернициозной анемией выявлено поражение антрального отдела [87]. Причина может скрываться в последствиях инфекции H. pylori [27], которая сопутствует АИГ.

Частой находкой при морфологическом исследовании выступает кишечная метаплазия, то есть замещение желудочного эпителия кишечным. Полагают, что распространенность кишечной метаплазии коррелирует с развитием атрофических изменений в теле желудка [71]. Согласно описаным наблюдениям, у 43-88% пациентов с пернициозной анемией выявляется кишечная метаплазия [71, 117, 138, 144, 147]. Подобные изменения можно увидеть уже макроскопически при проведении эндоскопического исследования [22]. Кроме кишечной возможно развитие пилорической метаплазии, которая характеризуется образованием на месте главных желез, ветвящихся желез, напоминающих пилорические (псевдопилорические железы Штерка) [52, 144, 174].

1.8. Лечение аутоиммунного гастрита

Нелеченый АИГ характеризуется неблагоприятным прогнозом. В 60-х годах ХХ века были предприняты попытки проведения иммуносупрессивной терапии. Исследователи из Мельбурна применяли преднизолон в дозе 20 мг в сутки в течение 20 недель у пациентов с мегалобластной анемией [186]. Были получены хорошие результаты: адсорбция витамина В12 увеличилась у 6 пациентов из 8, а у 4 больных при морфологическом исследовании отмечена регенерация желез тела.
желудка. Однако уровень антител к париетальным клеткам на фоне проведенной терапии не изменялся. После отмены преднизолона полученный эффект в виде улучшения абсорбции витамина B12 не сохранялся. Подобное исследование было проведено и в США [99]. Стоит отметить, что, как и в прошлом исследовании, после отмены терапии достигнутые положительные результаты не сохранялись. Таким образом, преднизолон оказывал положительный эффект только при продолжающемся лечении. Сохраняющиеся высокие титры антител к париетальным клеткам в дальнейшем поддерживали воспалительный процесс в слизистой оболочке тела желудка [162, 186]. После создания инъекционных форм кобаламина, методом выбора в лечении пациентов с АИГ стало введение препаратов витамина B12. Учитывая высокую эффективность данного вида лечения пернициозной анемии применение глюкокортикостероидов не используется в настоящее время [130]. Таким образом, этиопатогенетической терапии для аутоиммунного гастрита не разработано, и на первый план вышли профилактика и лечение дефицита витамина B12, а также своевременная диагностика адено карциномы и карциноида желудка.

1.8.1. Предупреждение развития атрофии у пациентов с аутоиммунным гастритом

Признано, что длительное течение инфекции H. pylori может приводить к появлению атрофических изменений в слизистой оболочке желудка, а также кишечной метаплазии [120]. Распространенность H. pylori в мире высока: полагают, что эта инфекция встречается у 50% взрослого населения [59]. Следовательно, инфицирование пациентов с аутоиммунным гастритом H. pylori может привести к прогрессированию патологических изменений в слизистой оболочке желудка.

Показано, что проведение эрадикационной терапии H. pylori позитивно сказывается на течении атрофического гастрита тела желудка. Был проведен целый ряд наблюдений за пациентами после проведенного лечения. Так, уже через 1 год после эрадикации инфекции H. pylori при морфологическом исследовании
отмечается уменьшение воспалительных изменений в слизистой оболочке [110, 132, 148], а в некоторых случаях и увеличение кислотопродукции при суточном мониторировании pH желудка [148]. В более поздние сроки появляется положительная динамика серологических показателей: пепсиногена I, отношения пепсиногена I/II. Согласно проведенным исследованиям, ожидать увеличения показателей пепсиногена I можно уже спустя 2 года после успешно проведенной эрадикационной терапии H.pylori [67, 110], иногда вплоть до его нормализации через 4 года [67]. Кроме того, были получены обнадеживающие результаты и в отношении патологических изменений слизистой оболочки желудка в виде уменьшения атрофии и иногда кишечной метаплазии [132]. Таким образом, в настоящее время рекомендовано проведение эрадикационной терапии H.pylori пациентам с целью предотвращения и уменьшения прогрессирования гистологических изменений [120].

Положительное влияние эрадикационной терапии на течение АИГ, сочетающегося с инфекцией H.pylori, подтверждено как ретроспективными, так и проспективными исследованиями. Таким образом, пациентам с АИГ показано тестирование на H.pylori и эрадикационная терапия в случае наличия инфекции [141]. Однако даже при успешной элиминации инфекции аутоиммунный процесс в слизистой оболочке тела желудка не прекращается.

1.8.2. Лечение дефицита витамина B12

Развитие дефицита витамина B12 представляет собой типичное осложнение аутоиммунного гастрита. Первоначальные рекомендации по изменению диеты и внесению в нее печени, красного мяса в настоящее время не применяются в связи с появлением более эффективной терапии. Парентеральное введение кобаламина в настоящее время служит основным методом лечения B12-дефицитной анемии.

Витамин B12 существует в 2х формах: цианокобаламин и гидроксикобаламин. Для лечения анемии цианокобаламин назначают по 1000 мкг в сутки. Препарат вводят внутримышечно в течение 4-6 недель. Гидроксикобаламин достаточно
вводить через день по 1000 мкг (или 500 мкг ежедневно) в течение 4 недель. На 3-4-й день от начала лечения витамином В12 начинает увеличиваться содержание ретикулоцитов. Максимальный подъем ретикулоцитов обнаруживается на 5-8-й день в зависимости от выраженности анемии (ретикулоцитарный криз). После полной нормализации показателей крови проводят поддерживающую терапию. В течение 2 месяцев цианкобаламин вводят по 1000 мкг еженедельно, а затем пожизненно по 1000 мкг 1 раз в месяц. Гидроксикобаламина можно вводить меньшую дозу и реже - в течение первых двух месяцев по 1 разу в 10 дней по 500 мкг, а затем пожизненно ежемесячно по 500 мкг. При поражении нервной системы (фундиклярный миелоз) назначают большие дозы витамина В12 (до 2000 мкг ежедневно). Возможно проведение трансфузий эритроцитов при тяжелой анемии, нарушениях гемодинамики. Во всех случаях дефицита витамина В12 парентеральная терапия должна привести к быстрой и стойкой ремиссии [14]. Кроме того, были разработаны пероральные формы витамина В12 с высоким содержанием кобаламина, существуют так же интраназальные и сублингвальные формы [23, 84]. Они применяются в качестве поддерживающей терапии или при наличии противопоказаний к парентеральному введению.

Гематологические показатели на фоне терапии препаратами кобаламина быстро приходят к референсным значениям [178]. Так, показатели гемoglobinна у пациентов с тяжелой В12-дефицитной анемией по результатам проведенных исследований нормализуются уже через 1,5-3 месяца [126, 158]. Кроме того, нормализуются и другие показатели: тромбоциты, лейкоциты [158]. Неэффективность витамина В12 говорит о неправильном диагнозе [14]. Менее эффективной оказывается терапия витамином В12 при наличии поражения нервной системы: при поздней диагностике купируются не все неврологические проявления, и лишь у малой части больных нормализуются психические нарушения [114]. Единичные исследования свидетельствуют о снижении уровня гомоцистеина и уменьшении риска тромбообразования [145].
1.8.3. Лечение карциноида желудка у пациентов с аутоиммунным гастритом

Карциноид зачастую является случайной находкой при аутоиммунном гастрите и служит следствием гипергастринемии. В большинстве случаев течение карциноида благоприятное, однако встречаются случаи метастазирования и прорастания сквозь толщу стенки желудка.

В качестве лечения у пациентов с множественными карциноидами на фоне гипергастринемии применялось оперативное лечение в виде антрумэктомии [32, 40, 91]. Некоторые исследования свидетельствуют о самостоятельном исчезновении карциноида после проведения антрумэктомии и нормализации уровня гастрин, кроме того в дальнейшем не отмечено появления новых случаев гиперплазии ЭХП-клеток в течение 6 месяцев [91]. Существует медикаментозная терапия карциноидов и гиперплазии ЭХП-клеток: используются аналоги соматостатина, аналоги же гастрин находятся в стадии разработки [40, 194]. Однако чаще всего в настоящее время при ранней диагностике применяется эндоскопическая резекция [101, 194].

1.9. Прогноз при аутоиммунном гастрите

Течение аутоиммунного гастрита бессимптомное до развития атрофических изменений в теле желудка, после чего может появиться дефицит витамина В12, возникнуть гиперплазия и дисплазия ЭХП-клеток. Кроме того, вслед за атрофическими изменениями может появиться кишечная метаплазия и дисплазия, в связи с чем пациенты с АИГ попадают в группу риска по развитию аденокарциномы желудка.

1.9.1. Пернициозная анемия

Собственно, изучение аутоиммунного гастрита началось с выяснения причин тяжелой пернициозной (злокачественной) анемии. В начале XX века прогноз пациентов с В12-дефицитной анемии был крайне неблагоприятный. После появления развернутой клинической картины недостаточности кобаламина средняя продолжительность жизни составляла от 1 года до 3 лет [42]. После
разработки G.R. Minot специфической диеты, богатой продуктами, содержащими витамин B12, появилась возможность значимо улучшить показатели выживаемости пациентов с финальными стадиями аутоиммунного гастрита [50]. В настоящее время диагностика дефицита кобаламина не вызывает затруднений и основывается во многом на проведении рутинных исследований (клинический анализ крови и содержание сывороточного витамина B12). Своевременное лечение препаратами кобаламина дает быстрый результат и позволяет полностью нормализовать уровень гемоглобина. Кроме того, отсутствие эффекта от терапии витамином B12 может рассматриваться как ошибочный диагноз пернициозной анемии [14]. Таким образом, на современном этапе лечение B12-дефицитной анемии не представляет сложностей, а прогноз пациентов по сути определяется своевременным обращением за медицинской помощью и своевременной диагностикой.

1.9.2. Карциноид желудка

Карциноид желудка, развивающийся из ЭХП-клеток, одна из распространенных форм дисплазии желудочно-кишечного тракта. В настоящее время по данным американских авторов 7% карциноидов приходится на желудок [139]. На современном этапе полагают, что большинство карциноидов желудка (65%) связано с наличием хронического атрофического гастрита тела желудка аутоиммунного генеза [159].

Для атрофического гастрита тела желудка характерно развитие карциноида I типа, который представляет собой гастрин-зависимую опухоль, когда длительно существующий высокий уровень гастрин стимулирует рост ЭХП-клеток. При сопоставлении уровня гастрина отмечена прямая пропорциональная зависимость с плотностью ЭХП-клеток в теле желудка при морфологическом исследовании, причем наибольшие значения выявлены у пациентов с карциноидом [26, 39, 76]. Распространенность собственно карциноида I типа среди пациентов с хроническим
атрофическим гастритом тела желудка колеблется от 1% до 12,5% по данным различных авторов.

Чаще всего течение карциноида бессимптомное и его обнаружение является случайной находкой при эндоскопическом, а затем морфологическом исследовании. Возможен переход дисплазии ЭХП-клеток в карциноид с течением времени: у 22% пациентов с дисплазией через 41 месяц наблюдения развился карциноид, а среди пациентов без предшествующей дисплазии – лишь у 1,1% (ОШ 26,0) [26]. Течение карциноида I типа благоприятное. Метастазирование выявляется менее, чем в 10% случаев при малых размерах опухоли (менее 2 см) [139]. Согласно результатам наблюдения за 152 больными с карциноидом I типа в течение 4,5 лет, случаев летальных исходов, связанных с опухолью не отмечено [143].

Таким образом, в настоящее время высокий риск развития карциноида у пациентов с аутоиммунным гастритом на стадии атрофии не вызывает сомнения. Течение карциноида в данном случае благоприятное и, в подавляющем большинстве случаев, не приводит к летальному исходу.

1.9.3. Аденокарцинома желудка

Первые взаимосвязи между аутоиммунным гастритом и аденокарциномой были определены по результатам статистических исследований по распространенности рака желудка у больных с пернициозной анемией. В 1979 году были опубликованы данные датских авторов: среди 877 пациентов с аденокарциномой желудка у 2,2% выявлена В12-дефицитная анемия, что было выше, чем в популяции в 3 раза [72]. Стоит отметить, что опухоль преимущественно локализовалась в теле и дне желудка. Много позже были опубликованы результаты 20-летнего наблюдения за пациентами с пернициозной анемией (n=5408) в Швеции [93]. Было выявлено, что заболеваемость аденокарциномой желудка у пациентов с АИГ выше, чем в популяции (стандартизованный коэффициент заболеваемости 2,9). Исследования малых групп пациентов с пернициозной анемией демонстрируют противоречивые
результаты: от высокой частоты рака желудка (3-3,6%) [156, 157] до отсутствия различий в сравнимаемой популяции [151].

В настоящее время рак желудка кишечного типа описывается с помощью модели развития – каскада Correa. Первые данные о взаимосвязи кишечной метаплазии и аденокарциномы желудка появились в 1938 году благодаря работам морфологов Явы и Суматры [37]. В 1955 году В.С. Morson в результате своих наблюдений сделал вывод, что рак желудка появляется в зонах кишечной метаплазии [124]. На основании этих и собственных данных в 1975 году Pelayo Correa с соавторами предложили модель канцерогенеза аденокарциномы желудка [57]. Согласно ей, рак желудка кишечного типа является результатом постепенных изменений в слизистой оболочке желудка: хронический гастрит, затем мультифокальный атрофический гастрит и кишечная метаплазия. Эта модель была модифицирована в 1988 и 1992 годах. В настоящее время последовательность изменений выглядит следующим образом: нормальная слизистая желудка → поверхностный гастрит (неатрофический гастрит) → мультифокальный атрофический гастрит без кишечной метаплазии → кишечная метаплазия полного типа (тонкокишечная) → кишечная метаплазия неполного типа (толстокишечная) → дисплазия низкой степени (неинвазивная дисплазия низкой степени) → дисплазия высокой степени (неинвазивная дисплазия высокой степени) → инвазивная аденокарцинома [58]. Таким образом, атрофический гастрит и кишечная метаплазия стали рассматриваться как изменения слизистой оболочки желудка, обладающие предраковым потенциалом. При длительном наблюдении пациентов с атрофическими изменениями выявлено, что при тяжелой атрофии тела желудка риск развития рака желудка был значительно выше – в 5,76 раз в сравнении с пациентами с легкой степенью атрофии [167]. Высоким риском опухолевой трансформации также обладает кишечная метаплазия [77]. В настоящее время инфекция H.pylori расценивается как основная причина хронического гастрита [58, 102]. Прогрессирование хронического атрофического гастрита до стадии рака желудка наблюдается приблизительно в 10% случаев [180].
Результаты исследований, в которые включались пациенты пернициозной анемией, противоречивы. Специалисты объясняют это разными методологическими подходами или малым количеством наблюдений [180]. Однако по результатам мета-анализа 27 исследований, относительный риск развития рака желудка у пациентов с пернициозной анемией составляет 6,8 (95% ДИ: 2.6-18.1), что превышает риск заболевания раком желудка в европейской и американской популяциях [181].
ГЛАВА 2. Материалы и методы исследования

2.1 Характеристика больных

Критериями включения в группу пациентов с аутоиммунными заболеваниями были:

1) Пациенты старше 18 лет;
2) Пациенты с установленным диагнозом аутоиммунного заболевания (аутоиммунный тиреоидит, целиакия, аутоиммунный гепатит, первичный билиарный цирроз, первичный склерозирующий холангит, перекрестный синдром первичный билиарный цирроз/ аутоиммунный гепатит, перекрестный синдром первичный склерозирующий холангит / аутоиммунный гепатит);
3) Пациенты, подписавшие информированное согласие на участие в исследовании.
4) Критериями включения в контрольную группу пациентов являлись возраст старше 18 лет, отсутствие установленных или выявленных на момент обследования аутоиммунных заболеваний и подписанное информированное согласие пациента.

Критериями исключения были:

1) Отказ пациента принять участие в исследовании;
2) Тяжелое состояние больного;
3) Наличие онкологических заболеваний в анамнезе или впервые выявленного онкологического заболевания во время обследования;
4) Беременные женщины и кормящие матери;
5) Пациенты с наличием оперативного вмешательства на желудке или тонкой кишке в анамнезе;
6) Злоупотребление алкогольными напитками (опросник AUDIT, CAGE);
7) Прием препаратов, побочным эффектом которых является макроцитоз эритроцитов (метотрексат, антиковульсанты, ко-тримоксазол, циклюсерин, фурадонин);
8) Наличие указаний на психиатрические заболевания в анамнезе.

Характеристика включенных в исследование больных такова: 106 пациентов с установленным диагнозом аутоиммунного тиреоидита (средний возраст 58,9 ±16,3 лет, соотношение мужчин и женщин 1:7), 1 пациент с целиакией (мужчина 18 лет), 23 пациента с аутоиммунными заболеваниями печени (средний возраст 48,9±13,4 лет, соотношение мужчин и женщин 1:2,83). В контрольную группу были включены 39 пациентов без установленных аутоиммунных заболеваний (средний возраст 48,9±16,3 лет, соотношение мужчин и женщин 1:2,9). Распределение больных, включенных в исследование, по возрастным группам и по полу отображено на Рисунках 5, 6 и 7.
Рисунок 5 - Распределение больных с аутоиммунным тиреоидитом по возрастным группам и по полу

Рисунок 6 - Распределение больных с аутоиммунными заболеваниями печени по возрастным группам и по полу

Рисунок 7 - Распределение больных без аутоиммунных заболеваний по возрастным группам и по полу

По результатам исследования наличия антител к париетальным клеткам (АПК) у всех пациентов, включенных в исследование, была сформирована основная группа больных (n=71), средний возраст составил 58,6±15,1 лет, соотношение мужчин и
женщин 1:5,5. Распределение сформированной группы пациентов с АПК по возрасту и полу представлено на Рисунке 8.

Соотношение аутоиммунных заболеваний в группе пациентов с АПК было следующим: 3 случая диффузного токсического зоба, 52 случая тиреоидита Хашимото, 2 случая первичного билиарного цирроза, 4 случая сочетания первичного билиарного цирроза и аутоиммунного гепатита и 1 случай первичного склерозирующего холангита в сочетании с аутоиммунным гепатитом. Стоит отметить, что у 2 пациентов в ходе обследования выявлено сочетание четырех аутоиммунных заболеваний: первичный билиарный цирроз, аутоиммунный гепатит, тиреоидит Хашимото и аутоиммунный гастрит.

В качестве сопутствующих заболеваний у пациентов с АПК были выявлены: ишемическая болезнь сердца (20 пациентов), гипертоническая болезнь (18 пациентов), хронический панкреатит (12 пациентов), аутоиммунные заболевания печени (7 пациентов), язвенная болезнь (5 пациентов), функциональная диспепсия (5 пациентов), анемия (3 пациента), вегетососудистая дистония (1 пациент) (Рисунок 9).
Во время госпитализации пациенты получали лекарственную терапию согласно основному заболеванию. В лечении больных с аутоиммунными заболеваниями печени использовались иммуносупрессивные препараты: глюкокортикостероиды и азатиоприн.

После проведения исследования на наличие АПК из контрольной группы была сформирована группа из 16 пациентов без аутоиммунных заболеваний и без АПК (средний возраст 37,5±12,8 лет, соотношение мужчин и женщин 1:3). Причинами госпитализации в данной группе послужили: гастро-эзофагеальная рефлюксная болезнь в 9 случаях, функциональная диспепсия в 3 случаях и в 2 случаях - обострение язвенной болезни желудка и хронического панкреатита.

2.2 Лабораторные методы исследования

Всем пациентам проводилось исследование клинического анализа крови с оценкой уровня гемоглобина, количества эритроцитов, а также среднего объема эритроцита (MCV), среднего количества гемоглобина в эритроците (MCH), средней концентрации гемоглобина в эритроците (MCHC), цветового показателя (Межклиническая клинико-диагностическая лаборатория Первого МГМУ им.И.М.Сеченова, зав.лабораторией М.В.Геладзе).

ЦП отражает относительное содержание гемоглобина в эритроците. Вычисляют ЦП по формуле:
ЦП = \frac{3 \times \text{гематокрит, г/л}}{\text{три первые цифры количества эритроцитов, млн}}

Снижение ЦП может быть следствием малого насыщения нормальных по объему эритроцитов гемоглобином, либо уменьшения объема эритроцита. Повышение ЦП является следствием увеличения объема эритроцита.

МСН определяет среднее содержание гемоглобина в отдельном эритроците и аналогичен ЦП, однако считается более точным. Вычисляется МСН по формуле:

\[MCH, \, пг = \frac{10 \times \text{гемоглобин, г/л}}{\text{количество эритроцитов, млн/мл}}\]

Интерпретация значений МСН аналогична ЦП.

МСНС отражает насыщение эритроцита гемоглобином и характеризует отношение количества гемоглобина к объему клетки. В отличие от МСН он не зависит от объема эритроцита. В гематологических анализаторах он вычисляется автоматически, однако его можно вычислить:

\[MCHC, \, г/дл = \frac{\text{гемоглобин, г/дл}}{\text{гематокрит, \%}} \times 10\]

МСВ – средняя величина объема эритроцитов. В гематологических анализаторах данный параметр вычисляется делением суммы клеточных объемов на число эритроцитов.

Самостоятельно МСВ можно определить следующим образом:

\[MCV, \, фл = \frac{\text{гематокрит, \%} \times 10}{\text{количество эритроцитов, млн/мкл}}\]

Снижение МСВ свидетельствует об уменьшении размеров эритроцитов, повышение – об увеличении их объема.

В рамках исследования биохимического анализа крови оценивался уровень витамина В12 и железа в сыворотке крови (отделение лабораторной диагностики с экспресс-лабораторией УКБ №2, зав.лабораторией к.м.н В.С. Безруков).
2.3 Эндоскопические методы исследования

Эзофагогастродуоденоскопия проводилась заведующей отделением диагностической и лечебной эндоскопии УКБ №2 Первого МГМУ им. И.М. Сеченова Т.В. Антоновой и врачом отделения М.Ю. Коньковым на аппарате «Fujinon EG-250WR5» (Япония): оценивались состояние слизистой оболочки различных отделов желудка и 12-перстной кишки для диагностики язвенной болезни, эрозивного гастрита, портальной гастропатии, опухолевых процессов, наличия визуальных признаков атрофических изменений слизистой. Среди эндоскопических методик применялась узкоспектральная видеоэндоскопия (narrow band imaging, NBI) - визуализации структуры ткани за счет воспроизведения изображения в узком диапазоне световых волн.

2.4 Гистологические методы исследования

Проведение ЭГДС преследовало также взятие биопсий для определения степени атрофических изменений согласно рекомендациям Российского Общества Патологоанатомов и международной системы OLGA (Operative Link on Gastritis Assessment): 2 фрагмента слизистой оболочки антрального отдела, угол желудка, 2 фрагмента слизистой оболочки тела желудка по большой и малой кривизне (Рисунок 10).

Материал фиксировали в 10% формалине. Парафиновые срезы готовили традиционным методом. Полученные срезы окрашивали гематоксилин-эозином. Морфологическое исследование проводилось на кафедре патологической анатомии им. акад. А.И.Струкова Первого МГМУ им. И.М. Сеченова профессором, д.м.н. А.С. Тертычным.

Характер изменений слизистой оболочки желудка оценивался в соответствии с международными рекомендациями по оценке патологических изменений (OLGA-system): поверхностный гастрит, атрофический с указанием степени атрофии, определение степени и выраженности воспаления, а также наличие или отсутствие очагов кишечной метаплазии. Выявленные патологические изменения оценивали по градации - слабые, умеренные, выраженные с помощью визуально-аналоговой шкалы (Рисунок 11 и 12).

Рисунок 11 - Оценка стадии хронического гастрита (выраженность атрофии) (По Rugge M., 2008)
Рисунок 12 - Оценка степени хронического гастрита (выраженность воспаления) (По Rugge M., 2008)

Кроме того, было проведено иммуногистохимическое исследование - метод патологоанатомического исследования, основанный на иммунных реакциях антиген-антитело, позволяющий выявить и локализовать тот или иной антиген в тканевых срезах. В качестве маркера был выбран хромогранин А. Данный белок является одним из компонентов секреторных гранул нейроэндокринных клеток и позволяет оценить их наличие в слизистой оболочке различных отделов желудка.

2.5 Иммуноферментный анализ

Зabor крови производился строго согласно инструкции производителя. Кровь отбирали в сывороточные пробирки, затем их центрифугировали в течение 15 мин при 2000 об/мин. Пробы сыворотки разливали в пробирки и хранили в холодильнике при температуре -70°C до момента выполнения анализа. Иммунологическое исследование проводилось в межклинической иммунологической лаборатории Первого МГМУ им. И.М. Сеченова, зав.лабораторией А.Г. Серова.
2.5.1. Количественное определение аутоантител класса G к париетальным клеткам желудка (ORGENTEC Anti-Parietal Cell (H+/K+-ATPase), ORGENTEC Diagnostika GmbH, Германия)

Принцип метода. Определение антител происходит с помощью непрямого иммуноферментного анализа. Антитела в образцах сыворотки пациента реагируют с антигенами, нанесенными на ячейки микропланшета. При промывке удаляются все несвязанные компоненты. При последующей инкубации с ферментным конъюгатом пероксидазы хрена образуются комплексы конъюгат-антитело-антиген. При промывке удаляется несвязавшийся конъюгат. Далее в микропланшеты добавляют ТМБ (3,3', 5,5'-тетраметилбензидин) и инкубируют 15 мин: происходит гидролиз образовавшихся комплексов с появлением голубого окрашивания. Затем добавляют стоп-агент и окрашивание меняется на желтое. Интенсивность желтого цвета коррелирует с концентрацией комплекса антитело-антиген и может быть измерена фотометрически при длине волны 450 нм.

Приготовление реагентов.

Все реагенты и микропланшет прогревают до комнатной температуры (20…25°C).

Приготовление буфера для образцов: перед использованием содержимое флакона с концентратом буфера для образцов разбавляется дистиллированной водой до конечного объема 100 мл (20 мл концентрата и 80 мл воды).

Приготовление буферного промывочного раствора: перед использованием содержимое флакона с концентратом промывочного буфера разбавляется дистиллированной водой до конечного объема 1000 мл (20 мл концентрата и 980 мл воды).

Приготовление образцов: перед использованием все пробы пациентов разбавляются в 100 раз буфером для образцов (10 мкл образца и 990 мкл буфера для образцов), хорошо перемешиваются.

Контроли готовы к использованию и не требуют разбавления.
Методика исследования.

1. Подготавливается достаточное количество стрипов для постановки контролей, калибровок и предварительно разбавленных проб пациентов в дублях.

2. В ячейки добавляют по 100 мкл соответствующих калибровок, контролей и предварительно разбавленных образцов пациентов.

3. Инкубируют в течение 30 минут при комнатной температуре (20 - 28 °C).

4. Затем содержимое ячеек удаляют и трижды промывают 300 мкл промывочного раствора.

5. В каждую ячейку добавляют 100 мкл раствора ферментного конъюгата.

6. Инкубируют в течение 15 минут при комнатной температуре.

7. Затем содержимое ячеек удаляют и трижды промывают 300 мкл промывочного раствора.

8. В каждую ячейку добавляют 100 мкл субстрата TMB.

9. Инкубируют в течение 15 минут при комнатной температуре.

10. Затем в каждую ячейку добавляют 100 мкл стоп-раствора и выдерживают 5 минут.

11. Оптическую плотность получившегося раствора оценивается с помощью микропланшетного ридера при длине волны 450 нм.

12. Для автоматического установления концентрации антител к париетальным клеткам использовали компьютерные программы, которые на основе полиномиальной кривой, построенной по калибровочным значениям, устанавливали неизвестную концентрацию антител.

В соответствии с инструкцией фирмы производителя титры антител менее 10 Ед/мл расцениваются как отрицательный результат, выше 10 Ед/мл – положительный результат.
2.5.2. Тест-система «Гастропанель» («Биохит», Финляндия)

Степень выраженности развития атрофических изменений в слизистой оболочке желудка определялась в том числе и серологическим методом, используя тест-систему «Гастропанель» («Биохит», Финляндия).

Накануне взятия крови (начиная с 24 часов) пациенты не пили, не принимали пищу, не курили. Забор крови для определения уровня пепсиногена I, пепсиногена II, базального гастрина-17 и IgG антител к H.pylori производился за 12-24 часа или после проведения ЭГДС. Эндоскопическое исследование может повлиять на выработку гастрина и, таким образом, привести к недостоверности результата.

Для определения пепсиногена I, пепсиногена II, гастрина-17 и IgG антител к H.pylori использовали специфические наборы для иммуноферментного анализа: пепсиноген I ИФА набор Cat. No. 601 010.01; пепсиноген II ИФА набор Cat. No. 601 020; гастрин-17 ИФА набор Cat. No. 601 035; антитела IgG к H.pylori ИФА набор Cat. No. 601 040.02.

Определение пепсиногена I.

Определение PGI основано на сэндвич-методе ИФА с использованием специфических иммобилизованных PGI антител, адсорбированных на лунках микропланшета, и связывающих антител, конъюгированных с пероксидазой хрена (HRP).

Принцип метода. Monоклональные антитела, специфичные к человеческому PGI, адсорбированные на поверхности лунок связывают молекулы PGI, представленные в образце.

Лунки микропланшета промывают для удаления не связавшихся компонентов. HRP-конъюгированные выявляющие антитела (конъюгат) добавляют в лунки, и они связываются с молекулами PGI. Несвязанный конъюгат удаляется из лунок при промывании, в лунки вносится субстрат (TMB). Субстрат окисляется ферментом до получения окрашенного в синий цвет конечного продукта. Ферментативная реакция прекращается после внесения останавливающего раствора. Интенсивность
окрашивания в желтый цвет прямо пропорциональна концентрации PGI в исследуемом образце.

Приготовление реагентов.

Все реагенты и микропланшет прогревают до комнатной температуры (20…25°C), инкубатор до 37°C.

Промывающий буфер разбавляют 1:10 (100 мл + 900 мл) дистиллированной водой.

Образцы сыворотки разводят буфером для разведения 1:10 (50 мкл + 450 мкл) и тщательно перемешивают.

Методика исследования.

1. В лунки микропланшета вносят по 100 мкл раствора бланка, калибровок, контроля и разведенных образцов. Закрывают лунки клейкой пленкой и инкубируют 60 мин при 37°C.

2. Каждую лунку микропланшета промывают 3 раза 350 мкл рабочего раствора промывающего буфера.

3. С помощью дозатора во все лунки микропланшета вносят по 100 мкл раствора конъюгата. Закрывают лунки клейкой пленкой и инкубируют 30 мин в инкубаторе при 37°C.

4. Каждую лунку микропланшета вновь промывают 3 раза 350 мкл рабочего раствора промывающего буфера.

5. С помощью дозатора во все лунки микропланшета вносят по 100 мкл раствора субстрата. Закрывают лунки клейкой пленкой и инкубируют 30 мин в темном месте при комнатной температуре (20…25°C).

6. С помощью дозатора во все лунки микропланшета вносят по 100 мкл останавливющего раствора.

7. Оптическую плотность получившегося раствора оценивается с помощью микропланшетного ридера при длине волны 450 нм.
8. Для автоматического установления концентрации PG I использовали компьютерные программы, которые на основе полиноминальной кривой, построенной по калибровочным значениям, устанавливали неизвестную концентрацию PG I.

Согласно инструкции производителя, нормальными значениями PG I является диапазон 30-165 мкг/л. Низкие значения PGI (PGI < 25 мкг/л) свидетельствуют о умеренном или тяжелом атрофическом гастрите с поражением слизистой оболочки тела желудка.

Определение пепсиногена II.

Определение PGII основано на сэндвич-методе ИФА с использованием специфических иммобилизованных антител к PGII, адсорбированных на лунках микропланшета, и связывающих антител, конъюгированных с пероксидазой хрена (HRP).

Принцип метода. Моноклональные антитела, специфичные к человеческому PGII, на поверхности лунок связывают молекулы PGII образца. Лунки микропланшета промывают для удаления не связавшихся компонентов. HRP-конъюгированные связывающие антитела (конъюгат) добавляют в лунки, и они взаимодействуют с молекулами PGII. Лунки промываются, добавляется TMB-субстрат. Развивается голубое окрашивание вследствие ферментативного разрушения гидроген пероксида пероксидазой хрена. Ферментативная реакция прекращается после внесения останавливающего раствора. Содержимое микролунок должно стать желтого цвета. Интенсивность окрашивания прямо пропорциональна концентрации PGII в исследуемом образце.

Приготовление реагентов.

Все реагенты и микропланшет прогревают до комнатной температуры (20…25°C).

Разбавляют промывающий буфер 1:10 (100мл + 900мл) дистиллированной водой.
Образцы сыворотки разбавляются 1:5 (100 мкл + 400 мкл) разводящим буфером, их следует тщательно перемешать.

Методика исследования.

1. В лунки микропланшета в дублях вносят по 100 мкл бланка, калибраторов, контроля и разведенных образцов. Закрывают лунки клейкой пленкой. Инкубируют 60 минут при комнатной температуре (20…25⁰С).

2. Каждую лунку микропланшета промывают 3 раза по 350 мл раствором промывающего буфера.

3. С помощью дозатора во все лунки микропланшета вносят по 100 мл раствора конъюгата. Закрывают лунки клейкой пленкой и инкубируют 60 минут при комнатной температуре (20…25⁰С).

4. Каждую лунку микропланшета вновь промывают 3 раза по 350 мл раствором промывающего буфера.

5. С помощью дозатора во все лунки микропланшета вносят по 100 мл раствора субстрата. Закрывают лунки клейкой пленкой и инкубируют 30 мин в темном месте при комнатной температуре (20…25⁰С).

6. С помощью дозатора во все лунки микропланшета вносят по 100 мл останавливющего раствора.

7. Оптическую плотность получившегося раствора оценивается с помощью микропланшетного ридера при длине волны 450 нм.

8. Для автоматического установления концентрации PG II использовали компьютерные программы, которые на основе полиноминальной кривой, построенной по калибровочным значениям, устанавливали неизвестную концентрацию PG II.

С целью диагностики атрофических изменений слизистой оболочки желудка определение PG II используется вместе с определением PG I для расчета их соотношения PGI/PGII. Согласно инструкции производителя, нормальными значениями PG II является диапазон 3-15 мкг/л. Соотношение PGI/PGII линейно уменьшается с увеличением выраженности атрофического гастрита в области тела.
желудка. Соотношение PG I и PG II меньше 2,5 показывает наличие у пациента тяжелой атрофии в теле желудка.

Определение гастроп-17.

Определение G-17-ELISA высшего типа основано на сэндвич-методе, когда специфические связывающие антитела к гастрину-17, адсорбированные на лунках микропланшета, и выявление антител, меченных пероксидазой хрена (HRP), обеспечивает контроль и усиление реакции.

Принцип метода.

Моноклональные антитела, специфичные к гастрину-17 человека на полиэтилгомеровой поверхности лунок, связываются с молекулами гастрин-17, представленными в образце. Лунки микропланшета промываются для удаления остатков образцов. Моноклональные HRP-конъюгированные антитела соединяются с молекулами гастрин-17. Лунки микропланшета промываются после инкубации, и добавляется субстрат – тетраметилбензидин (TMB). Субстрат окисляется ферментом (HRP), конечный продукт реакции окрашивается в голубой цвет. Ферментативная реакция прекращается после внесения останавлививающего раствора. Интенсивность окрашивания в желтый цвет прямо пропорциональна концентрации гастроп-17 в исследуемом образце.

Приготовление реагентов.

Все реагенты и микропланшет прогревают до комнатной температуры (20…25°C). Разводят концентрат промывающего буфера 1:9 (100 мл + 900 мл) дистиллированной водой.

Образцы сыворотки разводят 1:1 (150мкл + 150мкл) разводящим буфером (для образцов), тщательно перемешивают.

Методика исследования.

1. В лунки микропланшета вносят по 100 мкл раствора бланка, калибраторов, контроля и разведенных образцов. Закрывают лунки клейкой пленкой и инкубируют 60 мин при 37°C.
2. Каждую лунку микропланшета промывают 3 раза по 350 мкл раствором промывающего буфера.

3. С помощью дозатора в лунки микропланшета вносят по 100 мкл раствора коньогата. Закрывают планшет клейкой пленкой и инкубируют 60 мин при 37°С.

4. Каждую лунку микропланшета вновь промывают 3 раза по 350 мкл раствором промывающего буфера.

5. С помощью дозатора в лунки микропланшета вносят по 100 мкл перемешанного раствора субстрата и инкубируют в течение 30 минут при комнатной температуре (20-25°С).

6. С помощью дозатора в лунки микропланшета вносят по 100 мкл останавливающего раствора.

7. Оптическую плотность получившегося раствора оценивается с помощью микропланшетного ридера при длине волны 450 нм.

8. Для автоматического установления концентрации G-17 использовали компьютерные программы, которые на основе полиноминальной кривой, построенной по калибровочным значениям, устанавливали неизвестную концентрацию G-17.

Согласно инструкции производителя, нормальными значениями базального G-17 является диапазон 1-10 пмоль/л. У пациентов с положительным анализом на антитела к H.pylori низкие уровни базального G-17 плазмы/сыворотки (<2,0 пмоль/л) может свидетельствовать о двух возможностях: 1) умеренном или тяжелом атрофическом гастрите антрального отдела желудка и /или высокой кислотопродукции желудка. Если у пациента с низким уровнем базального G-17 (<2,0 пмоль/л) нет инфекции H.pylori, то это свидетельствует о высокой кислотопродукции.

Определение IgG к H.pylori.
Определение антител класса IgG к H.pylori основано на методе иммуноферментного анализа (ИФА) с частично очищенным бактериальным
антигеном *H.pylori*, адсорбированным на лунках микропланшета, и детекторными антителами, меченными пероксидазой хrena (HRP).

Принцип метода.

Приготовление реагентов.

Все реагенты и микропланшет согревают до комнатной температуры (20-25°C), инкубатор до 37°C. Концентрат промывочного буфера разводят 1:10 дистиллированной водой (100 мл + 900 мл).

Образцы сыворотки разводят буфера для разведения 1:200 (5 мл + 995 мл) и тщательно перемешивают.

Методика исследования.

1. В лунки микропланшета вносят по 100 мл буфера для разведения, калибратора, отрицательного контроля, положительного контроля и разведенных образцов. Закрывают лунки крышкой и инкубируют 30 мин при температуре 37°C.

2. Затем каждую лунку микропланшета промывают 3 раза 350 мл рабочего раствора промывочного буфера.

3. С помощью дозатора в лунки микропланшета вводят по 100 мл перемешанного разведенного раствора конъюгата. Лунки закрывают крышкой и инкубируют 30 мин при температуре 37°C.
4. Каждую лунку микропланшета вновь промывают 3 раза 350 мкл рабочего раствора промывочного буфера.

5. С помощью дозатора в лунки микропланшета вводят по 100 мкл раствора субстрата. Инкубируют 30 мин при комнатной температуре (20-25°C).

6. С помощью дозатора вводят в лунки микропланшета по 100 мкл остановливающего раствора.

7. Оптическую плотность получившегося раствора оценивается с помощью микропланшетного ридера при длине волны 450 нм.

8. Для автоматического установления концентрации антител класса IgG к H.pylori использовали компьютерные программы, которые на основе полиноминальной кривой, построенной по калибровочным значениям, устанавливали неизвестную концентрацию антител.

В соответствии с инструкцией фирмы производителя значения EIU менее 30 указывают на отрицательный результат, т.е. говорят о том, что антител IgG к H.pylori не определяется, или их количество ниже границы определения. Значения EIU, равные или большие 30, указывают на то, что антитела IgG к H.pylori определяются, поэтому результат теста считается положительным.

2.6 Методы диагностики инфекции H.pylori

Для определения H.pylori использовали следующие доступные методики: дыхательный тест с 13С-меченной мочевиной, быстрый уреазный тест при проведении ЭГДС, определение антител IgG к H.pylori в сыворотке крови, гистологический метод.

2.6.1 Дыхательный тест с 13С-меченной мочевиной

Принцип метода: гидролиз меченной стабильным изотопом углерода 13С мочевины, происходящий под действием вырабатываемого H.pylori ферментом уреазой. Определение в выдыхаемом воздухе отношения концентрации изотопомеров двукиси углерода 13CO2 и 12CO2 до и после приема мочевины позволяет делать выводы о наличии H.pylori в организме.
Протокол выполнения 13С-УДТ.

- Тест проводится натощак или не ранее, чем через 6 ч после утреннего завтрака.
 - За 10 мин до приема мочевины пациент принимает 200 мл апельсинового сока с добавлением 2,4 г лимонной кислоты, которые необходимы для замедления эвакуации водного раствора мочевины из желудка и стандартизации кислотно-основного состояния в желудке.
 - За 8 мин до приема мочевины отбирается первичная проба выдыхаемого воздуха.
 - В момент начала отсчета производится прием 100 мг меченой мочевины в водном растворе (50 мл).
 - В течение первой–третьей минут после принятия мочевины пациент принимает горизонтальное положение, лежа поочередно по 1 мин на каждом боку, чтобы обеспечить контакт мочевины со всей поверхностью желудка.
 - На 30-й минуте производится отбор контрольной пробы выдыхаемого воздуха.

Пробы отбираются в герметичные стеклянные контейнеры емкостью 50 мл (стеклянная баночка с герметично уплотняющейся пластиковой крышкой) или пластиковые мешки.

Анализ проб выдыхаемого воздуха проводился в течение первых суток в лаборатории лазерной диагностики Института Общей Физики им. А.М.Прохорова РАН, зав.отделом д.ф.-м.н., профессор Е.В. Степанов.

2.6.2. Быстрый уреазный тест (тест-система ХЕЛПИЛ, ООО «Ассоциация Медицины и Аналитики», Россия)

Основой теста является свойство $H.pylori$ выделять фермент уреазу, которая участвует в процессе преобразования мочевины в аммиак и углекислый газ. В результате реакции рН среды сдвигается в щелочную сторону, что фиксируется с помощью индикатора.
Протокол выполнения. Полученный при ЭГДС биоптат слизистой оболочки антрального отдела желудка помещается на индикаторный диск при помощи сухого пинцета. Через 3 мин биоптат снимают с индикаторного диска и оценивают факт появления или отсутствия цветового пятна на индикаторном диске. Появление цветового пятна с оттенками синего на индикаторном диске свидетельствует о наличии уреазной активности биоптата, а тест считают положительным.

2.6.3 Определение антител IgG к H.pylori в сыворотке крови.
Проводилось только при первичном обследовании пациента с помощью тест-системы «Гастропанель» (см. 2.5.2)

2.7 Эрадикационная терапия Helicobacter pylori
Эрадикационная терапия H.pylori проводилась пациентам по схемам, рекомендованным Российской Гастроэнтерологической Ассоциацией. В качестве первой линии терапии рассматривалось 2 схемы: стандартная тройная терапия (ингибитор протонной помпы, амоксициллин, кларитромицин) в течение 10 дней либо квадротерапия с препаратами висмута (ингибитор протонной помпы, метронидазол, тетрациклин, висмута трикалия дицитрат) в течение 10 дней для пациентов с непереносимостью пенициллинов. Контроль эффективности терапии проводился не ранее чем через 4 недели после окончания лечения и приема ингибиторов протонной помпы, как минимум, двумя методами (за исключением определения антител IgG к H.pylori в сыворотке крови). При получении двух отрицательных результатов - эрадикационная терапия расценивалась как успешно проведенная.

2.8 Инструментальные методы оценки секреции желудка
Исследование кислотопродуцирующей функции желудка проводилось методом суточной pH-метрии к.м.н О.А. Стороновой под руководством научного консультанта профессора, д.м.н. А.С. Трухманова с помощью аппарата
"Гастроскан-24". Ацидогастромонитор суточный носимый «Гастроскан-24» предназначен для длительного (до 48 часов) изучения рН в трех зонах верхних отделов желудочно-кишечного тракта (пищевод, желудок, двенадцатиперстная кишка). Исследование проводится при помощи трансназального рН-зонда и автономного носимого регистрирующего блока. Перед исследованием подготавливается рН-зонд, калибруется прибор с данным рН-зондом. Затем подготавливается электрод сравнения рН-зонда и закрепляется на коже пациента. Рабочая часть рН-зонда вводится в желудочно-кишечный тракт через нос и фиксируется на теле пациента. Зонд устанавливается строго натощак. В дальнейшем пациент ведет обычный образ жизни: спит, ест, принимает лекарства и т.п. По окончании исследования результаты измерения рН передаются для компьютерной обработки специализированным программным обеспечением.

В настоящем исследовании все пациенты, которым проводилась суточная рН-метрия, не использовали в своем лечении препаратов, влияющих на кислотопродукцию. Таким образом, результаты рН-метрии следует рассматривать как истинную секрецию желудка пациента.

Целью проведения рН-метрии было определение:
- минимальное и максимальное значение рН в желудке
- процентное соотношение различных рН в желудке в течение суток

Значения рН в теле желудка оценивались по классификации Ю.Я.Лея: гиперацидность (рН менее 1,5), нормоацидность (рН 1,6-2,0), гипоацидность (рН 2,1-5,9), и анацидность (рН более 6,0).

2.9 Статистическая обработка данных

Применялись параметрические и непараметрические статистические методы:
Соответствие нормальному распределению оценивали по тестам Колмогорова-Смирнова, Шапиро-Уилкса;

Описательная статистика (вычисление средних значений, стандартных отклонений и стандартных ошибок для нормального распределения; медианы и процентилем для ненормального распределения);

Сравнение независимых выборок при непараметрическом распределении с вычислением U-критерия Манна-Уитни либо с помощью дисперсионного анализа Крускала-Уоллиса;

Для выявления связей между категоризованными переменными был использован χ² Пирсона для таблиц сопряженности

Для выявления связей при непараметрическом распределении – корреляционный анализ с вычислением рангового коэффициента корреляции Спирмена и оценкой его значимости

После проверки на нормальность выявлено, что изучаемые параметры имеют ненормальное распределение. Таким образом, в представленной работе использовались непараметрические статистические методы (медианы и процентили в описательной статистике, оценка U-критерия Манна-Уитни, коэффициент ранговой корреляции Спирмена).

За уровень доказательности статистических показателей принято p<0,05.
ГЛАВА 3. Результаты исследований

3.1 Антитела к париетальным клеткам у пациентов с аутоиммунными заболеваниями

С целью оценки распространенности антител к париетальным клеткам (АПК) было обследовано 169 больных: 106 человек с установленным диагнозом аутоиммунного тиреоидита, 1 пациент с целиакией, 23 пациента с аутоиммунными заболеваниями печени, контрольную группу составили 39 пациентов без аутоиммунных заболеваний.

Из 106 пациентов с аутоиммунным тиреоидитом АПК были выявлены у 55 больных, что составило 51,9%. В группу пациентов с аутоиммунными заболеваниями печени было включено 23 пациента, при этом АПК были выявлены у 7 больных, что составило 30,4%. Из 39 пациентов контрольной группы АПК были выявлены у 9 больных (23%). У единственного пациента с целиакией антител к париетальным клеткам желудка выявлено не было.

Таким образом, распространенность АПК среди различных групп пациентов выглядит следующим образом (Рисунок 13):

<table>
<thead>
<tr>
<th>Группа пациентов</th>
<th>АПК+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пациенты с АИТ</td>
<td>51,9%</td>
</tr>
<tr>
<td>Пациенты с аутоиммунными заболеваниями печени</td>
<td>30,4%</td>
</tr>
<tr>
<td>Контрольная группа</td>
<td>23%</td>
</tr>
</tbody>
</table>

Рисунок 13 - Распространенность АПК среди различных групп пациентов

При проведении статистического анализа выявлено, что разница между распространенностью АПК у пациентов с аутоиммунным тиреоидитом и у пациентов контрольной группы достоверна (χ² Пирсона, p=0,0020). Между другими группами различий получено не было (χ² Пирсона, p<0,05).
В дальнейшем при анализе пациентов с АПК для оценки изменений показателей крови представлялось удобным разделить их по возрастным группам. Распределение пациентов с АПК по возрастным группам представлено в Таблице 1.

Таблица 1

<table>
<thead>
<tr>
<th>Возрастная группа</th>
<th>Все пациенты, n</th>
<th>Пациенты с АПК+, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-39</td>
<td>36</td>
<td>10</td>
</tr>
<tr>
<td>40-49</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>50-59</td>
<td>49</td>
<td>22</td>
</tr>
<tr>
<td>60-69</td>
<td>39</td>
<td>18</td>
</tr>
<tr>
<td>70-79</td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>Старше 80</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

При проведении анализа была выявлена статистически значимая разница (χ^2 Пирсона, $p=0,0376$) между распространенностью АПК среди различных возрастных групп: у лиц 20-39 лет АПК были выявлены у 27,9% пациентов, а к 70-79 года доля больных составляла 53,8% (Рисунок 14).

Рисунок 14 - Доля пациентов с АПК по различным возрастным группам

Достоверной корреляционной связи между возрастом и титром антител к париетальным клеткам в сыворотке не выявлено (коэффициент корреляции Спирмена 0,10, $p=0,4008$).
3.2 Характеристика пациентов с антителами к париетальным клеткам
В изучаемую группу пациентов с АПК вошел 71 пациент, медиана возраста составила 60 лет (Рисунок 15).

В исследование был включен 31 пациент мужского пола, АПК были выявлены у 13, что составило 41,9%. Из 138 женщин АПК определялись у 58 (42%). Достоверной разницы между распространенностью АПК между мужчинами и женщинами выявлено не было (χ^2 Пирсона, $p=0,9924$). Соотношение мужчин и женщин в сформированной группе пациентов с АПК составило 1:5,5.

Жалобы пациентов были обусловлены теми заболеваниями, которые явились причиной госпитализации: эпизоды болей за грудиной и одышки у пациентов с ишемической болезнью сердца, повышение цифр артериального давления у пациентов с гипертонической болезнью, декомпенсация функции печени у пациентов с аутоиммунными заболеваниями печени, боли в животе у пациентов с язвенной болезнью и хроническим панкреатитом. Обращают на себя внимание пациенты с анемией (3 больных), основной жалобой которых являлась появившаяся незадолго до госпитализации выраженная общая слабость. Кроме
того, молодые пациентки с дефицитом железа (5 больных) отмечали усиление выпадения волос, ломкость ногтей.

При объективном осмотре отмечалось изменения цвета кожных покровов и видимых слизистых оболочек у пациентов с анемией (безнность) и у пациентов с заболеваниями печени (желтушность). Классического проявления глюссита (глюссит Гунтера-Мюллера) при дефиците витамина В12 (гладкая за счет исчезновения сосочков, блестящая, «лакированная», ярко-красная или малиновая поверхность языка) не было выявлено ни у одного пациента, включая даже больных с дефицитом цианокобаламина и тяжелой анемией. Однако 2 больных отмечали повторяющиеся на протяжении нескольких лет эпизоды жжения в языке (при дальнейшем анализе у них выявлено снижение уровня витамина В12).

Среди сопутствующих заболеваний у больных с АПК выявлялись: сахарный диабет (8 человек – 11,3%), последствия инсульта (3 человека – 4,2%), тяжелое атеросклеротическое поражение артерий нижних конечностей (2 пациента – 2,8%). Данные сопутствующие заболевания затрудняли объективную оценку поражения нервной системы в у пациентов с дефицитом витамина В12.

3.3 Оценка показателей клинического анализа крови у пациентов с антителами к париетальным клеткам и пациентов без аутоиммунных заболеваний

За нормальные показатели уровня гемоглобина приняты: для женщин 120-140 г/л, для мужчин 130-150 г/л. Согласно лабораторным нормам, референсные значения количества эритроцитов – от 3,5 до 5,5x10^{12}/л. К характеристикам собственно эритроцитов относятся ЦП (норма 0,85-1,05), МСН (27-34 пг), МСНС (32,6-36,2 г/дл) и МCV (80-96 фл).

Медианы показателей клинического анализа крови для группы пациентов с АПК не выходили за пределы нормальных значений (Таблица 2).
Таблица 2

Показатели клинического анализа крови у пациентов с АПК

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Медиана</th>
<th>Минимум</th>
<th>Максимум</th>
<th>25%</th>
<th>75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гемоглобин, г/л</td>
<td>135,1</td>
<td>50</td>
<td>174</td>
<td>128,3</td>
<td>144,3</td>
</tr>
<tr>
<td>Эритроциты, х10^{12}/л</td>
<td>4,4</td>
<td>1,4</td>
<td>5,6</td>
<td>4,1</td>
<td>4,7</td>
</tr>
<tr>
<td>ЦП</td>
<td>0,93</td>
<td>0,73</td>
<td>1,2</td>
<td>0,87</td>
<td>0,96</td>
</tr>
<tr>
<td>MCV, фл</td>
<td>90,4</td>
<td>74,6</td>
<td>121,2</td>
<td>88,5</td>
<td>93,9</td>
</tr>
<tr>
<td>MCH, пг</td>
<td>30,9</td>
<td>24,6</td>
<td>42,7</td>
<td>29,6</td>
<td>32,2</td>
</tr>
<tr>
<td>MCHC, г/л</td>
<td>34,0</td>
<td>31,2</td>
<td>36,1</td>
<td>33,2</td>
<td>34,6</td>
</tr>
</tbody>
</table>

Достоверной корреляционной связи между показателями клинического анализа крови и титром антител к париетальным клеткам в сыворотке не выявлено (коэффициент корреляции Спирмена, p>0,05).

Представлялось интересным оценить показатели клинического анализа крови в зависимости от возраста пациентов.

Рассматривая медианы гемоглобина у пациентов с АПК различных возрастных категорий, необходимо отметить, что они не выходили за рамки нормальных значений, а разница между ними была статистически незначимой (p>0,05). Достоверной разницы так же не выявлено между MCH и MCHC (Таблица 3).

Таблица 3

Медианы показателей клинического анализа крови у пациентов с АПК различных возрастных групп, Me (25; 75) процентиль

<table>
<thead>
<tr>
<th></th>
<th>Гемоглобин, г/л</th>
<th>Эритроциты, х10^{12}/л</th>
<th>ЦП</th>
<th>MCV, фл</th>
<th>MCH, пг</th>
<th>MCHC, г/л</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-39</td>
<td>132,3 (130,1; 140,6)</td>
<td>4,4 (4,0; 4,8)</td>
<td>0,9 (0,87; 0,92)</td>
<td>89,0 (87,5; 91,9)</td>
<td>30,2 (29,1; 30,9)</td>
<td>34,0 (33,3; 34,9)</td>
</tr>
<tr>
<td>40-49</td>
<td>140,5 (138,3; 149,0)</td>
<td>4,8 (4,5; 4,9)</td>
<td>0,91 (0,86; 0,92)</td>
<td>89,0 (88,0; 91,5)</td>
<td>30,6 (28,7; 30,9)</td>
<td>33,4 (32,7; 34,7)</td>
</tr>
<tr>
<td>50-59</td>
<td>135,1 (127,0; 144,3)</td>
<td>4,4 (4,1; 4,7)</td>
<td>0,93 (0,91; 0,96)</td>
<td>90,3 (85,7; 93,1)</td>
<td>31,1 (30,5; 32,2)</td>
<td>34,1 (33,8; 34,8)</td>
</tr>
<tr>
<td>60-69</td>
<td>135,3 (130,1; 142,7)</td>
<td>4,5 (4,2; 4,7)</td>
<td>0,92 (0,87; 0,94)</td>
<td>89,6 (88,7; 91,4)</td>
<td>30,9 (29,3; 31,6)</td>
<td>34,1 (33,2; 34,5)</td>
</tr>
<tr>
<td>70-79</td>
<td>132,3 (127,6; 139,0)</td>
<td>4,3 (3,6; 4,6)</td>
<td>0,95 (0,87; 1,08)</td>
<td>91,6 (90,2; 109,5)</td>
<td>31,2 (29,7; 36,0)</td>
<td>33,3 (32,2; 34,1)</td>
</tr>
<tr>
<td>>80</td>
<td>141,8 (136,1; 146)</td>
<td>4,4 (4,3; 4,4)</td>
<td>0,98 (0,95; 0,99)</td>
<td>95,6 (93,9; 99,1)</td>
<td>32,6 (31,8; 33,0)</td>
<td>33,9 (33,1; 34,2)</td>
</tr>
</tbody>
</table>
Относительно MCV отмечено, что существует достоверная разница (p<0,05) между медианами среднего объема эритроцитов у пациентов старше 80 лет и пациентов следующих возрастных групп: 20-39, 40-49, 50-59 и 60-69 лет, а также у пациентов 70-79 и 20-39, 60-69 лет (Таблица 4, Рисунок 16).

Таблица 4

Сравнительная характеристика медиан MCV у пациентов различных возрастных групп, пг

<table>
<thead>
<tr>
<th></th>
<th>20-39</th>
<th>40-49</th>
<th>50-59</th>
<th>60-69</th>
<th>70-79</th>
<th>>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-39</td>
<td>-</td>
<td>0,8621</td>
<td>0,6476</td>
<td>0,6138</td>
<td>0,0261</td>
<td>0,0162</td>
</tr>
<tr>
<td>40-49</td>
<td>0,8621</td>
<td>-</td>
<td>0,7364</td>
<td>0,7613</td>
<td>0,1625</td>
<td>0,0339</td>
</tr>
<tr>
<td>50-59</td>
<td>0,6476</td>
<td>0,7364</td>
<td>-</td>
<td>0,9566</td>
<td>0,0598</td>
<td>0,0190</td>
</tr>
<tr>
<td>60-69</td>
<td>0,6138</td>
<td>0,7613</td>
<td>0,9566</td>
<td>-</td>
<td>0,0350</td>
<td>0,0171</td>
</tr>
<tr>
<td>70-79</td>
<td>0,0261</td>
<td>0,1625</td>
<td>0,0598</td>
<td>0,0350</td>
<td>-</td>
<td>0,5240</td>
</tr>
<tr>
<td>>80</td>
<td>0,0162</td>
<td>0,0339</td>
<td>0,019</td>
<td>0,0171</td>
<td>0,5240</td>
<td>-</td>
</tr>
</tbody>
</table>

Рисунок 16 - Медианы показателей MCV у пациентов различных возрастных групп с АПК

Был проведен корреляционный анализ между возрастом пациентов и показателями клинического анализа крови. Была выявлена достоверная корреляционная положительная связь между возрастом и ЦП, MCV, отрицательная корреляционная связь – между возрастом и MCHC (Таблица 5).
Таблица 5

Коэффициенты ранговой корреляции Спирмена (r,) при оценке зависимости показателей клинического анализа крови от возраста пациентов

<table>
<thead>
<tr>
<th>Показатель крови</th>
<th>Коэффициент Спирмена</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гемоглобин</td>
<td>-0,04</td>
<td>0,7329</td>
</tr>
<tr>
<td>Эритроциты</td>
<td>-0,12</td>
<td>0,2840</td>
</tr>
<tr>
<td>ЦП</td>
<td>0,25</td>
<td>0,0351</td>
</tr>
<tr>
<td>MCV</td>
<td>0,32</td>
<td>0,0050</td>
</tr>
<tr>
<td>MCH</td>
<td>0,21</td>
<td>0,0674</td>
</tr>
<tr>
<td>MCHС</td>
<td>-0,28</td>
<td>0,0157</td>
</tr>
</tbody>
</table>

Согласно полученным коэффициентам корреляции, уровень связи между возрастом, MCV и ЦП можно расценивать как «среднюю положительную», а между возрастом и MCHС как «среднюю отрицательную» (Рисунок 17).

Рисунок 17 – График зависимости MCV (слева) и MCHС (справа) от возраста у пациентов с АПК

При обследовании пациентов с АПК анемия была выявлена у 8 пациентов, что составляет 11,3%. У 4х из них она была макроцитарной (MCV более 96 фл) и гиперхромной (ЦП более 1,05, MCH более 34 пг). В эту группу входило 2 женщины 71 и 77 лет и 2 мужчин 52 и 71 года. Стоит отметить, что у этих пациентов не было выявлено инфекции H.pylori, а из сопутствующих заболеваний можно выделить
аутоиммунный тиреоидит, ишемическую болезнь сердца, гипертоническую болезн и желчнокаменную болезнь.

У других 3х пациентов анемия носила микроцитарный (MCV менее 80 фл) и гипохромный характер (ЦП менее 0,85, МСН менее 27 пг). Это были 2 женщины: 30 лет, не инфицированная H.pylori, госпитализированная по поводу эрозивного гастрита и 63 лет, так же без инфекции H.pylori с синдромом мальабсорбции; и один мужчина 56 лет, страдающий первичным склерозирующим холангитом в сочетании с аутоиммунным гепатитом 1 типа, H.pylori-ассоциированным гастритом.

Еще один пациент с анемией – мужчина 52 лет, со смешанной формой гастрита (аутоиммунным и H.pylori-ассоциированным). Такие показатели крови как ЦП, MCV и MCH были в пределах нормальных значений, однако стоит отметить, что на момент включения в исследование пациент получал инъекции цианокобаламина в связи с выявленным ранее дефицитом витамина В12.

При проведении корреляционного анализа выявлена достоверная (p<0,0001) прямая корреляционная связь между уровнем гемоглобина и количеством эритроцитов (коэффициент корреляции Спирмена 0,79). Менее сильная (коэффициент корреляции Спирмена 0,23) положительная корреляционная связь выявлена между показателями гемоглобина и МСНС (p=0,0465).

Оценивая группу пациентов с АПК по ЦП (Таблица 6), были выявлены следующие данные: у 5 пациентов (7%) наблюдалась гиперхромия по данному показателю, а у 9 – гипохромия (12,7%).

Таблица 6

<table>
<thead>
<tr>
<th>Характеристики пациентов с измененным ЦП</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Пол (м:ж)</td>
</tr>
<tr>
<td>Возраст</td>
</tr>
<tr>
<td>Анемия</td>
</tr>
</tbody>
</table>
Таким образом, у пациентов с высоким ЦП так же выявлены высокие показатели MCV, MCH и анемия у 4 пациентов из 5. Стоит отметить отсутствие половых различий, а также возраст пациентов – старше 50 лет. Инфекции H.pylori у данной группы пациентов выявлено не было. В группе пациентов с низким ЦП отмечено преобладание женщин, а также широкий возрастной диапазон. Данная группа в целом отличается разнообразием: несмотря на низкий ЦП, не у всех пациентов выявлены низкие MCV, MCH, анемия. Инфекцией H.pylori было инфицировано 4 из 9 пациентов.

При оценке корреляционных зависимостей выявлена отрицательная связь средней силы (коэффициент корреляции Спирмена -0,42) между цветовым показателем и количеством эритроцитов. Высокая положительная корреляционная связь выявлена между цветовым показателем и MCV (коэффициент корреляции Спирмена 0,85, p<0,0001), MCH (коэффициент корреляции Спирмена 0,96, p<0,0001), менее выраженная связь обнаружена между ЦП и MCHC (коэффициент корреляции Спирмена 0,30, p=0,0088).

Не менее интересным представляется оценка пациентов с АПК по таким показателям как MCV и MCH.

Из всех пациентов с АПК у 6 выявлено превышение MCH (8,5%), а у 3 его снижение (4,2%). Краткая характеристика этих пациентов дана в таблице (Таблица 7).

<table>
<thead>
<tr>
<th>Пол (м:ж)</th>
<th>2:4</th>
<th>1:2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Возраст</td>
<td>52-77</td>
<td>56-66</td>
</tr>
</tbody>
</table>
Анемия | 66,6% | 33,3%
ЦП | ↑ 83,3% | ↓ 100%
MCV | ↑ 100% | ↓ 33,3%
H.pylori | 0% | 66,7%

В целом, группа пациентов с гиперхромией по MCH сходна с таковой по ЦП. А вот группы с низкими ЦП и МСН различны. Однако стоит отметить, что пациентов с АПК и низким МСН мало (3 больных), поэтому достоверно оценить эту группу представляется затруднительным.

При проведении корреляционного анализа получены следующие данные: отрицательная связь средней силы выявлена между МСН и количеством эритроцитов (коэффициент корреляции Спирмена -0,38, р=0,0010); очень высокая положительная корреляционная связь определяется между МСН и МСВ (коэффициент корреляции Спирмена 0,82, р<0,0001); положительная связь средней силы выявлена между МСН и МСНС (коэффициент корреляции Спирмена 0,35, р=0,0022).

Из группы пациентов с АПК у 12 больных был выявлен макроцитоз (16,9%). У 2 пациентов согласно оценке МСВ, выявлен микроцитоз: это женщина 59 лет с сочетанием первичного билиарного цирроза и аутоиммунного гепатита 1 типа и мужчина 56 лет, страдающий первичным склерозирующим холангитом в сочетании с аутоиммунным гепатитом 1 типа и гипохромной анемией. У этих больных так же был выявлен H.pylori-ассоциированный гастрит.

Характеристики пациентов с макроцитозом представлены в Таблице 8.

<table>
<thead>
<tr>
<th>Характеристика пациентов с макроцитозом</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пол (м:ж)</td>
</tr>
<tr>
<td>Возраст</td>
</tr>
<tr>
<td>Анемия</td>
</tr>
<tr>
<td>ЦП</td>
</tr>
</tbody>
</table>
Согласно полученным данным, мужчин с макроцитозом значительно меньше, чем женщин (2:10). Стоит отметить, что лишь у 4 больных из 12 выявлено снижение уровня гемоглобина, у 5 выявлено повышение ЦП и лишь у 6 – повышение МСН.

Отрицательная корреляционная связь средней силы (коэффициент корреляции Спирмена -0,48) выявлена между МСВ и количеством эритроцитов (p<0,0001). Как уже было отмечено выше, достоверная положительная корреляционная связь существует между МСВ и ЦП, МСВ и МСН.

В целом, у 25,4% пациентов с АПК в клиническом анализе крови были выявлены отклонения от нормы. Инфекция *H.pylori* имела место у 38,9% пациентов с патологическими изменениями и у 60,4% без таковых, однако достоверной разницы между этими группами по распространенности *H.pylori* выявлено не было (χ² Пирсона, p=0,1134).

В группе пациентов без аутоиммунных заболеваний и без АПК медианы показателей клинического анализа крови не выходили за рамки нормальных значений: гемоглобин 135,9 г/л, эритроциты 4,47х10¹²/л, ЦП 0,89, МСВ 87,9 фл, МСН 30,0 пг, МСНС 34,5 г/л. Выявлен 1 случай микроцитарной гипохромной анемии у пациентки с функциональной диспепсией: гемоглобин 94,1 г/л, эритроциты 3,82х10¹²/л, ЦП 0,73, МСВ 75,1 фл, МСН 24,6 пг, МСНС 32,8 г/л. Анемия у пациентки носила алиментарный характер. Обнаружены следующие отклонения в клиническом анализе крови у пациентов без аутоиммунных заболеваний и АПК: снижение ЦП у 3 больных (18,8%), снижение МСН у 3 (18,8%) и снижение МСВ – у 2 (12,5%). При проведении сравнительного анализа между пациентами с АПК и пациентами без аутоиммунных заболеваний и без АПК получена достоверная разница по распространенности низких значений МСН (4,2% против 18,8%; χ² Пирсона, p=0,0383). По показателям снижения ЦП и МСВ
достоверной разницы получено не было. Случаев гиперхромии по ЦП и макроцитоза у пациентов без аутоиммунных заболеваний и без АПК не обнаружено.

3.4 Оценка показателей биохимического анализа крови у пациентов с антителами к париетальным клеткам и без аутоиммунных заболеваний

Наиболее важной для пациентов с аутоиммунным гастритом является оценка таких биохимических показателей как сывороточное железо и витамин В12 (цианокобаламин).

За нормальные значения сывороточного железа приняты 6,6-26 мкмоль/л, цианокобаламина – 193-982 пг/мл. Медиана сывороточного железа для группы пациентов с АПК составила 17,54 (13,3; 21,0) мкмоль/л, медиана цианокобаламина – 432,0 (300,0; 587,0) пг/мл.

В таблице представлены медианы биохимических показателей у разных возрастных групп (Таблица 9).

<table>
<thead>
<tr>
<th>Возрастная группа</th>
<th>Железо, мкмоль/л</th>
<th>Цианокобаламин, пг/мл</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Me (25; 75) процентиль</td>
<td>p</td>
</tr>
<tr>
<td>1</td>
<td>20-39</td>
<td>19,1 (14,5; 24,2)</td>
</tr>
<tr>
<td>2</td>
<td>40-49</td>
<td>21,0 (20,9; 35,1)</td>
</tr>
<tr>
<td>3</td>
<td>50-59</td>
<td>17,0 (10,9; 20,0)</td>
</tr>
<tr>
<td>4</td>
<td>60-69</td>
<td>15,5 (12,7; 20,4)</td>
</tr>
<tr>
<td>5</td>
<td>70-79</td>
<td>17,0 (1,41; 19,6)</td>
</tr>
<tr>
<td>6</td>
<td>Старше 80</td>
<td>18,3 (16,8; 26,5)</td>
</tr>
</tbody>
</table>

Статистически достоверная разница (p<0,05) по содержанию сывороточного железа была выявлена между пациентами 40-49 лет и 60-69, 70-79 лет. При оценке
уровня цианокобаламина достоверно (p<0,05) отличались группы 20-39 и 60-69, 70-79; пациенты старше 80 и 40-49, 60-69 возрастных групп.

Достоверной корреляционной связи между биохимическими показателями и титром антител к париетальным клеткам в сыворотке не выявлено (коэффициент корреляции Спирмена, p>0,05).

Низкие показатели железа были выявлены у 7 пациентов, что составило 9,9%, медиана возраста - 57 лет. Инфекция H.pylori присутствовала у 57,1% пациентов с железодефицитом и у 54,7% больных без такового. Низкий уровень витамина В12 был выявлен у 12 пациентов (16,9%), медиана возраста составила 71 год (Таблица 10). Инфекция H.pylori была выявлена у 33,3% больных с недостаточностью кобаламина и у 59,3% с нормальным уровнем витамина В12, однако достоверной разницы по распространенности в этих двух группах не выявлено (χ² Пирсона, p=0,0991). Однако распространенность дефицита кобаламина достоверно различалась у пациентов с и без H.pylori: 7,7% и 28,1% соответственно (χ² Пирсона, p=0,0223). Статистически значимой разницы между возрастом пациентов с низким уровнем железа и витамина В12 получено не было (p>0,05).

Таблица 10

<table>
<thead>
<tr>
<th>Характеристика пациентов с низким содержанием сывороточного железа и цианокобаламина</th>
<th>Пациенты с низким содержанием железа (n=7)</th>
<th>Пациенты с низким содержанием цианокобаламина (n=12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пол (м:ж)</td>
<td>1:6</td>
<td>1:2</td>
</tr>
<tr>
<td>Возраст</td>
<td>25-66</td>
<td>37-86</td>
</tr>
<tr>
<td>Медиана возраста</td>
<td>57 лет</td>
<td>71 год</td>
</tr>
<tr>
<td>Анемия</td>
<td>28,6%</td>
<td>41,7%</td>
</tr>
<tr>
<td>ЦПП</td>
<td>↓100%</td>
<td>↑41,7%</td>
</tr>
<tr>
<td>MCH</td>
<td>↓57,1%</td>
<td>↑50%</td>
</tr>
<tr>
<td>MCV</td>
<td>↓57,1%</td>
<td>↑75%</td>
</tr>
<tr>
<td>H.pylori</td>
<td>57,1%</td>
<td>25%</td>
</tr>
</tbody>
</table>
Представлялась интересной оценка уровня железа и цианокобаламина в зависимости от показателей клинического анализа крови. У пациентов с анемией и высоким ЦП (N=4) уровень железа сохранялся в пределах нормальных значений, а вот уровень витамина B12 у всех пациентов был значительно меньше нижней границы нормы (<193 пг/мл). У других 3х пациентов с анемией был выявлен низкий ЦП, при этом у двух из них обнаружено снижение уровня железа, цианокобаламин не выходил за рамки нормальных значений. Еще у одного пациента с гипохромной анемией и первичным склерозирующим холангитом в сочетании с аутоиммунным гепатитом 1 типа не было отмечено снижения уровня железа, однако уровень витамина B12 был снижен.

Ниже представлена таблица средних биохимических показателей у пациентов с АПК в зависимости от показателей клинического анализа крови (Таблица 11).

Таблица 11

<table>
<thead>
<tr>
<th></th>
<th>Низкий показатель</th>
<th>Норма</th>
<th>Высокий показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>ЦП</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Железо, мкмоль/л</td>
<td>5,6 (4,7; 10,9)</td>
<td>18,0 (14,9; 21,0)</td>
<td>19,0 (16,0; 23,0)</td>
</tr>
<tr>
<td>Цианокобаламин, пг/мл</td>
<td>376,0 (340,0; 478,0)</td>
<td>475,0 (315,0; 614,0)</td>
<td>83,0 (64,0; 98,0)</td>
</tr>
<tr>
<td>МСН</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Железо, мкмоль/л</td>
<td>4,0 (1,2; 4,7)</td>
<td>17,8 (13,9; 21,0)</td>
<td>18,5 (16,0; 23,0)</td>
</tr>
<tr>
<td>Цианокобаламин, пг/мл</td>
<td>367,0 (310,0; 399,0)</td>
<td>475,0 (321,0; 635,0)</td>
<td>90,5 (64,0; 107,0)</td>
</tr>
<tr>
<td>МСВ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Железо, мкмоль/л</td>
<td>4,5</td>
<td>17,5 (12,9; 21,0)</td>
<td>18,0 (14,9; 21,0)</td>
</tr>
</tbody>
</table>
Цианокобаламин, пг/мл

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>343</td>
<td>487,0 (369,0; 639,0)</td>
<td>106,0 (73,5; 191,0)</td>
</tr>
</tbody>
</table>

Таким образом, очевидна разница между биохимическими показателями в зависимости от показателей клинического анализа крови. Так, например, медиана железа у пациентов с низким ЦП выходила за пределы нормальных значений, а при проведении сравнительного анализа выявлена достоверная разница между пациентами с нормальным ЦП (p=0,0010) и высоким ЦП (p=0,0093). В случае с цианокобаламином ситуация противоположная: у пациентов с высоким ЦП медиана цианокобаламина не только ниже нормальных значений, но и достоверно ниже, чем у пациентов с нормальным (p=0,0007) или низким ЦП (p=0,0027) (Рисунок 18).

Рисунок 18 - Медианы железа (слева) и цианокобаламина (справа) у пациентов с АПК в зависимости от ЦП

Аналогичная картина складывалась и при анализе зависимостей биохимических показателей от МСН. Низкому значению МСН соответствовал и низкий уровень железа, выявлена достоверная разница между пациентами с нормальным (p=0,0169) или высоким МСН (p=0,0455). Касаемо медианы витамина В12, то в группе пациентов с высоким МСН она была ниже нормальных значений, а также
достоверно ниже, чем у пациентов с низким \((p=0,0455)\) и нормальным MCH \((p=0,0001)\) (Рисунок 19).

![Рисунок 19 - Медианы железа и цианокобаламина у пациентов с АПК в зависимости от МЧН](image)

При оценке биохимических показателей в зависимости от MCV выявлены следующие закономерности. Медиана показателей железа у пациентов с микроцитозом ниже нормальных значений и достоверно ниже, чем у пациентов с нормальным MCV \((p=0,0036)\) и у пациентов с микроцитозом \((p=0,0201)\). А у пациентов с макроцитозом медиана показателей витамина B12 была значимо ниже, чем у пациентов с микроцитозом \((p=0,0201)\) и нормальным средним объемом эритроцитов \((p=0,0002)\) и, кроме того, она оказалась ниже лимита нормальных значений (Рисунок 20).
Рисунок 20 - Медианы железа и цианокобаламина у пациентов с АПК в зависимости от MCV

При проведении корреляционного анализа выявлена достоверная (p=0,0006) средняя по силе отрицательная связь (коэффициент корреляции Спирмена – 0,39) между возрастом и уровнем сывороточного витамина B12 (Рисунок 21).

Рисунок 21 – График зависимости уровня сывороточного цианокобаламина от возраста, коэффициент корреляции Спирмена -0,39

При оценке зависимости показателей железа от возраста достоверной связи не выявлено (p=0,4452). Зависимости между показателями клинического анализа
крови и уровнем сывороточного железа, а также витамина В12 представлены в Таблице 12.

<table>
<thead>
<tr>
<th></th>
<th>Железо</th>
<th></th>
<th>Цианокобаламин</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rs</td>
<td>p</td>
<td>rs</td>
<td>p</td>
</tr>
<tr>
<td>Гемоглобин</td>
<td>0,27</td>
<td>0,0225</td>
<td>0,30</td>
<td>0,0103</td>
</tr>
<tr>
<td>Эритроциты</td>
<td>0,01</td>
<td>0,9360</td>
<td>0,43</td>
<td>0,0001</td>
</tr>
<tr>
<td>ЦП</td>
<td>0,28</td>
<td>0,0153</td>
<td>-0,37</td>
<td>0,0014</td>
</tr>
<tr>
<td>MCV</td>
<td>0,33</td>
<td>0,0049</td>
<td>-0,46</td>
<td><0,0001</td>
</tr>
<tr>
<td>MCH</td>
<td>0,27</td>
<td>0,0202</td>
<td>-0,32</td>
<td>0,0054</td>
</tr>
<tr>
<td>MCHC</td>
<td>0,04</td>
<td>0,7147</td>
<td>0,16</td>
<td>0,1712</td>
</tr>
</tbody>
</table>

Положительная корреляционная связь выявлена между показателями железа и уровнем гемоглобина, ЦП, MCV и MCH. Оценивая взаимосвязи между показателями клинического анализа крови и уровнем цианокобаламина, были получены следующие результаты: положительная корреляционная связь определяется между витамином В12 и гемоглобином, эритроцитами; отрицательная связь средней силы выявлена между витамином В12 и ЦП, MCV и MCH.

В группе пациентов без аутоиммунных заболеваний и без АПК медианы биохимических показателей были в пределах нормальных значений: железо 13,4 мкмоль/л, цианокобаламин 533 пг/мл. В тоже время дефицит железа выявлен у 3 пациенток (18,8%). Достоверной разницы по распространенности дефицита железа между пациентами с АПК и пациентами без аутоиммунных заболеваний и без АПК не выявлено (9,9% против 18,8%; χ^2 Пирсона, $p=0,3138$). Случай дефицита витамина В12 в данной группе не обнаружен.
3.5 Инфекция *H.pylori* у пациентов с антителами к париетальным клеткам

По данным анализа наличия антител IgG к *H.pylori*, положительного результата быстрого уреазного теста или дыхательного теста было установлено, что из 71 пациента с АПК у 39 больных (54,9%) слизистая оболочка желудка была инфицирована *H.pylori* в прошлом или сохранялось персистирование инфекции на момент обследования.

Отмечено, что у пациентов без аутоиммунных заболеваний и без АПК распространенность *H.pylori* составила 56,2%. Достоверных различий по распространенности инфекции *H.pylori* у пациентов с АПК и пациентов без аутоиммунных заболеваний и без АПК получено не было.

3.5.1 Оценка показателей клинического анализа крови в зависимости от наличия инфекции *H.pylori*

Интересна оценка показателей крови у пациентов с АПК с и без инфекции *H.pylori*, а также выявление различий между этими группами пациентов.

В данном случае всех пациентов с АПК разделили на 2 подгруппы: больные с АПК (32 пациента) и пациенты с АПК и инфекцией *H.pylori* (39 пациентов).

В подгруппе пациентов с АПК были получены следующие данные (Таблица 13).

<table>
<thead>
<tr>
<th>Группа</th>
<th>Гемоглобин, г/л</th>
<th>Эритроциты, х10^{12}/л</th>
<th>ЦИП</th>
<th>МСВ, фл</th>
<th>МСН, пг</th>
<th>МСНС, г/л</th>
</tr>
</thead>
<tbody>
<tr>
<td>Всего (n=32)</td>
<td>133,1 (124,2; 136,3)</td>
<td>4,3 (4,0; 4,7)</td>
<td>0,93 (0,87; 0,97)</td>
<td>90,4 (88,6; 96,4)</td>
<td>31,1 (29,2; 33,1)</td>
<td>33,9 (33,1; 34,6)</td>
</tr>
<tr>
<td>1</td>
<td>20-39 (n=5)</td>
<td>130,1 (124,0; 133,9)</td>
<td>4,0 (3,9; 4,5)</td>
<td>0,9 (0,87; 0,91)</td>
<td>88,5 (87,5; 92,0)</td>
<td>30,0 (29,1; 30,8)</td>
</tr>
<tr>
<td>2</td>
<td>40-49 (n=0)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>50-59 (n=10)</td>
<td>135,1 (128,9; 144,3)</td>
<td>4,4 (4,1; 4,7)</td>
<td>0,93 (0,91; 0,97)</td>
<td>90,4 (89,1; 96,0)</td>
<td>31,1 (30,7; 32,6)</td>
</tr>
<tr>
<td>4</td>
<td>60-69 (n=10)</td>
<td>133,3 (127,2; 134,1)</td>
<td>4,3 (4,1; 4,7)</td>
<td>0,89 (0,82; 0,94)</td>
<td>89,4 (84,7; 91,3)</td>
<td>30,3 (27,7; 31,6)</td>
</tr>
</tbody>
</table>
Выходили за пределы нормальных показателей характеристики эритроцитов у пациентов старше 70 лет: выявлено повышение ЦП, MCV и MCH. При проведении сравнительного анализа выявлена достоверная разница (p<0,05) между средним уровнем эритроцитов, ЦП, MCV и MCH у пациентов старше 70 лет в сравнении с больными других возрастных групп.

Был проведен корреляционный анализ между показателями клинического анализа крови у пациентов с АПК и без инфекции H.pylori. Выявлены следующие достоверные связи: очень высокая положительная связь обнаружена между количеством эритроцитов и гемоглобином (коэффициент корреляции Спирмена 0,79, p<0,0001), высокая отрицательная корреляционная связь выявлена между количеством эритроцитов и ЦП (коэффициент корреляции Спирмена -0,59, p=0,0003), MCV (коэффициент корреляции Спирмена -0,64, p<0,0001), а также MCH (коэффициент корреляции Спирмена -0,53, p=0,0019). Между показателями объема и размеров эритроцитов выявлены достоверные (p<0,0001) очень высокие положительные связи: ЦП и MCV (коэффициент корреляции Спирмена 0,94), ЦП и MCH (коэффициент корреляции Спирмена 0,95), MCV и MCH (коэффициент корреляции Спирмена 0,89). Достоверной корреляционной связи между показателями клинического анализа крови и титром антител к париетальным клеткам у пациентов с АПК не выявлено (коэффициент корреляции Спирмена, p>0,05).

У пациентов с АПК и инфекцией H.pylori, средние показатели клинического анализа крови представлены в Таблице 14.
<table>
<thead>
<tr>
<th>Группа возрасту</th>
<th>Гемоглобин, г/л</th>
<th>Эритроциты, х10^12/л</th>
<th>ЦП</th>
<th>МCV, фл</th>
<th>МСН, пг</th>
<th>МСНС, г/л</th>
</tr>
</thead>
<tbody>
<tr>
<td>Всего (n=39)</td>
<td>138,7 (131,6; 146)</td>
<td>4,5 (4,3; 4,8)</td>
<td>0,92 (0,89; 0,95)</td>
<td>90,4 (88,0; 93,2)</td>
<td>30,9 (29,9; 31,8)</td>
<td>34,1 (33,4; 34,7)</td>
</tr>
<tr>
<td>1 20-39 (n=5)</td>
<td>132,4 (132,1; 140,6)</td>
<td>4,4 (4,4; 4,8)</td>
<td>0,91 (0,89; 0,92)</td>
<td>89,5 (87,6; 90,9)</td>
<td>30,5 (29,9; 30,9)</td>
<td>34,9 (33,5; 35,3)</td>
</tr>
<tr>
<td>2 40-49 (n=3)</td>
<td>140,5 (138,3; 149,0)</td>
<td>4,8 (4,5; 4,9)</td>
<td>0,91 (0,86; 0,92)</td>
<td>89,0 (88,0; 91,5)</td>
<td>30,1 (28,7; 30,9)</td>
<td>33,4 (32,7; 34,7)</td>
</tr>
<tr>
<td>3 50-59 (n=12)</td>
<td>133,5 (126,5; 144,8)</td>
<td>4,5 (3,9; 4,8)</td>
<td>0,93 (0,86; 0,95)</td>
<td>90,2 (83,7; 91,9)</td>
<td>31,1 (28,8; 31,6)</td>
<td>34,5 (33,4; 34,8)</td>
</tr>
<tr>
<td>4 60-69 (n=8)</td>
<td>142,6 (138,3; 158,7)</td>
<td>4,5 (4,4; 5,0)</td>
<td>0,93 (0,92; 0,97)</td>
<td>90,7 (89,0; 94,9)</td>
<td>31,2 (30,9; 32,4)</td>
<td>34,2 (33,9; 34,9)</td>
</tr>
<tr>
<td>5 70-79 (n=7)</td>
<td>136,7 (129,3; 146,0)</td>
<td>4,4 (4,2; 5,1)</td>
<td>0,91 (0,87; 0,93)</td>
<td>90,4 (89,9; 92,2)</td>
<td>30,0 (29,1; 30,8)</td>
<td>33,7 (31,9; 34,1)</td>
</tr>
<tr>
<td>6 >80 (n=4)</td>
<td>141,8 (136,1; 146)</td>
<td>4,4 (4,3; 4,4)</td>
<td>0,98 (0,95; 0,99)</td>
<td>95,6 (93,9; 99,1)</td>
<td>32,6 (31,8; 33,0)</td>
<td>33,9 (33,1; 34,2)</td>
</tr>
</tbody>
</table>

Во всех возрастных группах средние показатели не выходили за пределы нормальных значений. Выявлена статистически достоверная разница (p<0,05) по эритроцитам, ЦП, МCV и МСН у пациентов старше 80 лет в сравнении с другими возрастными группами.

Корреляционный анализ выявил следующие связи у пациентов с АПК и инфекцией *H.pylori*: положительная связь средней силы между возрастом и МCV (коэффициент корреляции Спирмена 0,41, p=0,0089); очень высокая положительная связь между гемоглобином и количеством эритроцитов (коэффициент корреляции Спирмена 0,76, p<0,0001); МCV и количеством эритроцитов отрицательная связь средней силы (коэффициент корреляции Спирмена -0,33, p=0,0372). Между характеристиками эритроцитов так же были
выявлены достоверные взаимосвязи (p<0,0001): между ЦП и MCV (коэффициент корреляции Спирмена 0,75), МСН (коэффициент корреляции Спирмена 0,92), а между собственно MCV и MСН – высокая положительная связь (коэффициент корреляции Спирмена 0,72). Достоверной корреляционной связи между показателями клинического анализа крови и титром антител к париетальным клеткам у пациентов с АПК и инфекцией H.pylori не выявлено (коэффициент корреляции Спирмена, p>0,05).

Представляется интересным сравнить данные пациентов выделенных двух подгрупп (с АПК и АПК и инфекцией H.pylori), по различным гематологическим характеристикам. При сравнении по средним показателям гемоглобина, статически значимо различались пациенты с АПК и с АПК и H.pylori в возрасте 60-69 лет (p=0,0129).

В отношении средних показателей количества эритроцитов у пациентов различных возрастных диапазонов отмечена достоверная разница в группе 70-79 лет (Рисунок 22).

Анализируя средние данные ЦП выявлено, что у пациентов с АПК 70-79 лет показатели ЦП достоверно различаются от таковых у пациентов с АПК и
инфекцией *H.pylori* (*p*=0,0145) и выходят за пределы нормальных значений (1,08 при референсных значениях до 1,05).

Ситуация со средними показателями MCV аналогична показателям эритроцитов: статистически достоверная разница выявлена в группах пациентов 70-79 лет, а у больных с АПК этого возрастного диапазона показатель MCV выходит за рамки нормальных значений (Рисунок 23).

Рисунок 23 - Средние показатели MCV у пациентов различных возрастных групп с АПК и с АПК и инфекцией *H.pylori*

При сравнении MCH выявлено, что у пациентов с АПК в группе 70-79 лет средние показатели выше нормальных значений, кроме того, существует статистически значимая разница в сравнении со второй подгруппой (Рисунок 24).
Рисунок 24 - Средние показатели MCH у пациентов различных возрастных групп с АПК и с АПК и инфекцией H.pylori
Средние показатели клинического анализа крови у пациентов без аутоиммунных заболеваний и без АПК в зависимости от наличия инфекции H.pylori не выходили за рамки нормальных значений (Таблица 15).

Таблица 15

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Пациенты с инфекцией H.pylori (n=9)</th>
<th>Пациенты без инфекции H.pylori (n=7)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гемоглобин, г/л</td>
<td>140,9 (123,4; 145,5)</td>
<td>133,9 (129,1; 142,7)</td>
<td>0,7110</td>
</tr>
<tr>
<td>Эритроциты, х10¹²/л</td>
<td>4,5 (4,3; 4,9)</td>
<td>4,4 (4,2; 4,6)</td>
<td>0,3682</td>
</tr>
<tr>
<td>ЦП</td>
<td>0,86 (0,79; 0,9)</td>
<td>0,94 (0,88; 0,96)</td>
<td>0,0800</td>
</tr>
<tr>
<td>MCV, фл</td>
<td>85,4 (80,8; 87,4)</td>
<td>90,7 (90,0; 91,7)</td>
<td>0,0171</td>
</tr>
<tr>
<td>MCH, пг</td>
<td>28,9 (26,5; 30,3)</td>
<td>31,5 (29,4; 32,0)</td>
<td>0,0807</td>
</tr>
<tr>
<td>MCHС, г/л</td>
<td>34,1 (33,7; 35,2)</td>
<td>34,5 (34,2; 35,6)</td>
<td>0,7110</td>
</tr>
</tbody>
</table>

Достоверные различия у пациентов без АПК в зависимости от наличия инфекции H.pylori были выявлены лишь по показателю MCV (p=0,0171), хотя и не выходили за рамки нормальных значений.
Представлялось интересным сравнение средних показателей клинического анализа крови у пациентов без АПК с/без *H. pylori* и показателей пациентов других групп (Таблица 16, 17, 18).

Таблица 16

<table>
<thead>
<tr>
<th>Медианы показателей клинического анализа крови у пациентов без АПК и пациентов с АПК, Me (25; 75) процентиль</th>
<th>Пациенты без АПК и H. pylori (n=7)</th>
<th>Пациенты с АПК (n=71)</th>
<th>p</th>
<th>Пациенты без АПК с инфекцией H. pylori (n=9)</th>
<th>Пациенты с АПК (n=71)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гемоглобин, г/л</td>
<td>133,9 (129,1; 142,7)</td>
<td>135,1 (128,3; 144,3)</td>
<td>0,7584</td>
<td>140,9 (123,4; 145,5)</td>
<td>135,1 (128,3; 144,3)</td>
<td>0,9899</td>
</tr>
<tr>
<td>Эритроциты, x10^{12}/л</td>
<td>4,4 (4,2; 4,6)</td>
<td>4,4 (4,1; 4,7)</td>
<td>0,6246</td>
<td>4,5 (4,3; 4,9)</td>
<td>4,4 (4,1; 4,7)</td>
<td>0,2505</td>
</tr>
<tr>
<td>ЦП</td>
<td>0,94 (0,88; 0,96)</td>
<td>0,93 (0,87; 0,96)</td>
<td>0,8442</td>
<td>0,86 (0,79; 0,9)</td>
<td>0,93 (0,87; 0,96)</td>
<td>0,0155</td>
</tr>
<tr>
<td>MCV, фл</td>
<td>90,7 (90,0; 91,7)</td>
<td>90,4 (88,5; 93,9)</td>
<td>0,6445</td>
<td>85,4 (80,8; 87,4)</td>
<td>90,4 (88,5; 93,9)</td>
<td>0,0003</td>
</tr>
<tr>
<td>MCH, пг</td>
<td>31,5 (29,4; 32,0)</td>
<td>30,9 (29,6; 32,2)</td>
<td>0,8998</td>
<td>28,9 (26,5; 30,3)</td>
<td>30,9 (29,6; 32,2)</td>
<td>0,0176</td>
</tr>
<tr>
<td>MCHC, г/л</td>
<td>34,5 (34,2; 35,6)</td>
<td>34,0 (33,2; 34,6)</td>
<td>0,0347</td>
<td>34,1 (33,7; 35,2)</td>
<td>34,0 (33,2; 34,6)</td>
<td>0,0981</td>
</tr>
</tbody>
</table>

Сравнивая медианы показателей клинического анализа крови у пациентов без АПК с/без инфекции *H. pylori* и группой пациентов с АПК в целом, выявлены достоверные различия по ЦП, MCV и MCH у больных без АПК и *H. pylori*, однако они не выходили за рамки нормальных значений.

Таблица 17

<table>
<thead>
<tr>
<th>Медианы показателей клинического анализа крови у пациентов без АПК и пациентов с АПК без инфекции H. pylori, Me (25; 75) процентиль</th>
<th>Пациенты без АПК и H. pylori (n=7)</th>
<th>Пациенты с АПК без H. pylori (n=32)</th>
<th>p</th>
<th>Пациенты без АПК с инфекцией H. pylori (n=9)</th>
<th>Пациенты с АПК без H. pylori (n=32)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гемоглобин, г/л</td>
<td>133,9 (129,1; 142,7)</td>
<td>133,1 (124,2; 136,3)</td>
<td>0,3698</td>
<td>140,9 (123,4; 145,5)</td>
<td>133,1 (124,2; 136,3)</td>
<td>0,7054</td>
</tr>
<tr>
<td>Эритроциты, x10^{12}/л</td>
<td>4,4 (4,2; 4,6)</td>
<td>4,3 (4,0; 4,7)</td>
<td>0,3797</td>
<td>4,5 (4,3; 4,9)</td>
<td>4,3 (4,0; 4,7)</td>
<td>0,2077</td>
</tr>
<tr>
<td>ЦП</td>
<td>0,94 (0,88; 0,96)</td>
<td>0,93 (0,87; 0,97)</td>
<td>0,9414</td>
<td>0,86 (0,79; 0,9)</td>
<td>0,93 (0,87; 0,97)</td>
<td>0,0250</td>
</tr>
<tr>
<td>MCV, фл</td>
<td>90,7 (90,0; 91,7)</td>
<td>90,4 (88,6; 96,4)</td>
<td>0,9708</td>
<td>85,4 (80,8; 87,4)</td>
<td>90,4 (88,6; 96,4)</td>
<td>0,0027</td>
</tr>
</tbody>
</table>
Достоверные различия получены между средними показателями ЦП, MCV и MCH у больных с \textit{H.pylori} без АПК и пациентов с АПК и без \textit{H.pylori}.

В сравнении с пациентами с АПК и \textit{H.pylori} так же были выявлены достоверные различия по ЦП, MCV и MCH, однако средние значения не выходили за рамки нормы.

Все пациенты с низкими показателями ЦП, MCH, MCV в группе больных без аутоиммунных заболеваний и без АПК были инфицированы \textit{H.pylori}.

Сравнивая распространенность низких показателей ЦП, MCH, MCV у пациентов с \textit{H.pylori} с/без АПК достоверная разница выявлена лишь по показателю MCH (5,1% против 30% соответственно; χ^2 Пирсона, $p=0,0125$). По распространенности низких показателей ЦП и MCV достоверной разницы обнаружено не было.

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Показатель & Пациенты без АПК и \textit{H.pylori} (n=7) & Пациенты с АПК и \textit{H.pylori} (n=39) & p & Пациенты без АПК с инфекцией \textit{H.pylori} (n=9) & Пациенты с АПК и \textit{H.pylori} (n=39) & p \\
\hline
Гемоглобин, г/л & 133,9 (129,1; 147,2) & 138,7 (131,6; 146) & 0,4445 & 140,9 (123,4; 145,5) & 138,7 (131,6; 146) & 0,3762 \\
Эритроциты, х1012/л & 4,4 (4,2; 4,6) & 4,5 (4,3; 4,8) & 0,3918 & 4,5 (4,3; 4,9) & 4,5 (4,3; 4,8) & 0,9894 \\
ЦП & 0,94 (0,88; 0,96) & 0,92 (0,89; 0,95) & 0,4796 & 0,86 (0,79; 0,9) & 0,92 (0,89; 0,95) & 0,0286 \\
MCV, фл & 90,7 (90,0; 91,7) & 90,4 (88,0; 93,2) & 0,9268 & 85,4 (80,8; 87,4) & 90,4 (88,0; 93,2) & 0,0019 \\
MCH, пг & 31,5 (29,4; 32,0) & 30,9 (29,9; 31,8) & 0,4723 & 28,9 (26,5; 30,3) & 30,9 (29,9; 31,8) & 0,0419 \\
MCNSC, г/л & 34,5 (34,2; 35,6) & 34,1 (33,4; 34,7) & 0,1735 & 34,1 (33,7; 35,2) & 34,1 (33,4; 34,7) & 0,4838 \\
\hline
\end{tabular}
\caption{Медианы показателей клинического анализа крови у пациентов без АПК и пациентов с АПК и инфекцией \textit{H.pylori}, Me (25; 75) процентиль}
\end{table}
3.5.2 Оценка показателей биохимического анализа крови у пациентов с и без инфекции *H. pylori*

Крайне интересной представляется оценка показателей железа и витамина В12 у пациентов различного возраста с АПК и с АПК и инфекцией *H. pylori*, а также их сравнение между собой.

В целом, средние значения сывороточного железа и витамина В12 не выходили за рамки нормальных значений (Таблица 19). Исключением является средний уровень цианокобаламина у пациентов с АПК в возрасте 70-79 лет, который был ниже референсных значений. В подгруппе пациентов с АПК достоверная разница между показателями витамина В12 была выявлена лишь у пациентов 60-69 и 70-79 лет. В подгруппе пациентов с АПК и инфекцией *H. pylori* выявлена достоверная разница по медианам железа между пациентами 40-49 лет и пациентами 50-59, 70-79 лет. Кроме того, статистически значимая разница выявлена между показателями цианокобаламина у пациентов 20-39 лет и пациентами 60-69, 70-79 лет, а также между пациентами 70-79 и старше 80 лет.

<table>
<thead>
<tr>
<th>Таблица 19</th>
<th>Средние биохимические показатели у пациентов различных возрастных групп с АПК и с АПК и инфекцией H. pylori, Ме (25; 75) процентиль</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Железо, мкмоль/л</td>
</tr>
<tr>
<td></td>
<td>АПК</td>
</tr>
<tr>
<td>Всего</td>
<td>(n=32)</td>
</tr>
<tr>
<td>1 20-39</td>
<td>(n=5)</td>
</tr>
<tr>
<td>2 40-49</td>
<td>(n=0)</td>
</tr>
<tr>
<td>3 50-59</td>
<td>(n=10)</td>
</tr>
<tr>
<td>4 60-69</td>
<td>(n=10)</td>
</tr>
<tr>
<td>5 70-79</td>
<td>(n=7)</td>
</tr>
<tr>
<td>6 >80</td>
<td>(n=0)</td>
</tr>
</tbody>
</table>
При проведении корреляционного анализа были выявлены множественные достоверные связи между показателями клинического и биохимического анализа крови (Таблица 20).

Таблица 20

Коэффициенты ранговой корреляции Спирмена (r) при оценке зависимости показателей клинического анализа крови от сывороточного железа и цианокобаламина у пациентов с АПК

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Железо</th>
<th>Цианокобаламин</th>
</tr>
</thead>
<tbody>
<tr>
<td>Коэффициент корреляции Спирмена</td>
<td>р</td>
<td>Коэффициент корреляции Спирмена</td>
</tr>
<tr>
<td>Гемоглобин</td>
<td>0,26</td>
<td>0,1501</td>
</tr>
<tr>
<td>ЦП</td>
<td>0,38</td>
<td>0,0333</td>
</tr>
<tr>
<td>MCV</td>
<td>0,39</td>
<td>0,0245</td>
</tr>
<tr>
<td>MCH</td>
<td>0,35</td>
<td>0,0430</td>
</tr>
</tbody>
</table>

В группе пациентов с АПК и инфекцией H. pylori достоверными были корреляционные связи между возрастом и цианокобаламином (коэффициент корреляции Спирмена -0,53, р=0,0005), а также между MCV и цианокобаламином (коэффициент корреляции Спирмена -0,40, р=0,0112).

При проведении сравнительного анализа пациентов разного возраста двух выделенных подгрупп по биохимическим показателям достоверные различия получены между уровнем цианокобаламина у пациентов 70-79 лет (р=0,0350). По остальным показателям достоверной разницы выявлено не было (Рисунок 25).
Кроме того, выявлена отрицательная корреляционная связь между титром антител к париетальным клеткам и уровнем витамина В12 у пациентов с АПК (коэффициент корреляции Спирмена -0,40, \(p=0,0228 \)). У пациентов с АПК и инфекцией \(H.pylori \) подобной связи не выявлено.

Медианы биохимических показателей у пациентов без аутоиммунных заболеваний и без АПК были в пределах нормальных значений: железо 11,5 мкмоль/л и витамин В12 527 пг/мл у пациентов с \(H.pylori \), железо 13,6 мкмоль/л и витамин В12 539 пг/мл у пациентов без \(H.pylori \), достоверно значения в группах не отличались (\(p>0,05 \)). При сравнении средних показателей у пациентов без АПК и у пациентов других групп достоверных различий выявлено не было. Низкие значения железа выявлены у 3 пациентов, двое из которых инфицированы \(H.pylori \).

3.6 Серологические показатели атрофии слизистой оболочки желудка

Песиноген I представляет собой белок, продуцируемый главными клетками и клетками шеек фундальных желез. Нормальными показателями пепсиногена I являются 30-165 мкг/л. Снижение данного маркера у пациентов без операций на желудке расценивают как развитие атрофических изменений в слизистой оболочке.
тела желудка. Повышение же свидетельствует о наличии активного воспаления, чаще всего, связанного с инфекцией *H. pylori*, гиперсекрецией соляной кислоты (язвенная болезнь, гастринoma).

Пепсиноген II представляет собой белок, продуцируемый не только в фундальном отделе желудка (главные и шеечные клетки), но также и в антральном отделе и в бруннеровых железах двенадцатиперстной кишки. Нормальными значениями являются 3-15 мкг/л. Снижение пепсиногена II отмечено у пациентов после резекции желудка или гастрэктомии, при первичной надпочечниковой недостаточности. Повышение данного маркера свидетельствует о развитии воспалительных изменений в слизистой оболочке желудка, чаще всего связанного с инфекцией *H. pylori*, а также может являться следствием гиперсекреции соляной кислоты (язвенная болезнь, гастринoma).

В клинической практике широко используется соотношение пепсиногенов I и II типа. В отсутствие поражения слизистой оболочки желудка количество секретируемого PG I в 3-20 раз выше, чем PG II. При развитии атрофических изменений слизистой оболочки тела желудка и снижении концентрации пепсиногена I это соотношение уменьшается. Однако данный показатель необходимо рассматривать в сочетании со значениями собственно пепсиногенов.

Гастрин-17 - полипептидный гормон, который вырабатывается G-клетками антрального отдела желудка. За нормальные показатели приняты значения 1-10 пмоль/л. В связи с возрастанием секреции в ответ на стимулирующие факторы (прием белковой пищи, растяжение антрального отдела желудка, курение), данный показатель изучался натощак, так называемая базальная секреция. Высокая концентрация гастротрина-17 свидетельствует о повышении рН желудочного сока, т.е. об атрофии слизистой оболочки тела желудка. Кроме того, высокие показатели также могут встречаться у пациентов после резекции желудка и ваготомии. Низкие показатели гастротрина-17 могут быть следствием гиперсекреции соляной кислоты либо тяжелых атрофических изменений антрального отдела желудка.
В группе пациентов с АПК медиана пепсиногена I составила 39,1 мкг/л, пепсиногена II - 8,6 мкг/л. Эти показатели не выходили за границы нормальных значений (Таблица 21). Среднее значение гастрин-17 составило 27 пмоль/л, что превышает верхний лимит нормы (10 пмоль/л).

<table>
<thead>
<tr>
<th>Показатели пепсиногена I, пепсиногена II и гастрин-17 у пациентов с АПК</th>
<th>Медиана</th>
<th>Минимум</th>
<th>Максимум</th>
<th>25%</th>
<th>75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пепсиноген I, мкг/л</td>
<td>39,1</td>
<td>2,2</td>
<td>205,9</td>
<td>13,8</td>
<td>87,5</td>
</tr>
<tr>
<td>Пепсиноген II, мкг/л</td>
<td>8,6</td>
<td>1,9</td>
<td>55,4</td>
<td>5,6</td>
<td>16,5</td>
</tr>
<tr>
<td>Пепсиноген I/II</td>
<td>3,5</td>
<td>0,4</td>
<td>18,1</td>
<td>1,7</td>
<td>8,7</td>
</tr>
<tr>
<td>Гастрин-17, пмоль/л</td>
<td>27</td>
<td>0,7</td>
<td>81,0</td>
<td>3,1</td>
<td>47,0</td>
</tr>
</tbody>
</table>

Из 71 пациента с АПК нормальный уровень пепсиногена I на момент обследования был выявлен лишь у 30 (42,3%), у 34 больных он был снижен (47,9%), а у 7 – повышен (9,8%). Значения пепсиногена II сохранялись в пределах нормы у 51 пациента (71,8%), были снижены у 1 пациента (1,4%), повышены – у 19 больных (26,8%). Низкие значения расчетного отношения пепсиноген I/II отмечены у 32 пациентов (45,1%) Высокие значения гастрин-17 определялись у 64,8% пациентов (46 больных), у остальных же показатели не выходили за рамки референсных значений.

Достоверная корреляционная отрицательная связь выявлена между титром АПК и показателями пепсиногена I (коэффициент корреляции Спирмена -0,50, p<0,0001) и положительная корреляционная связь между титром АПК и показателями гастрин-17 (коэффициент корреляции Спирмена 0,64, p<0,0001).

Крайне интересной представляется оценка серологических маркеров атрофии у пациентов различных возрастных групп в связи поэтапным развитием патологических изменений слизистой оболочки желудка. Средние показатели представлены в Таблице 22.
Таблица 22
Средние показатели пепсиногена I, пепсиногена II и гастрина-17 у пациентов с АПК различных возрастных групп, Me (25;75) процентиль

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Пепсиноген I, мкг/л</th>
<th>Пепсиноген II, мкг/л</th>
<th>Пепсиноген I/II</th>
<th>Гастрина-17, пмоль/л</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20-39 (n=10)</td>
<td>85,9 (47,3; 118,6)</td>
<td>9,7 (6,4; 25,4)</td>
<td>6,2 (3,9; 8,8)</td>
<td>8,1 (1,9; 28,7)</td>
</tr>
<tr>
<td>2</td>
<td>40-49 (n=3)</td>
<td>73 (32,4; 149,5)</td>
<td>4,0 (3,3; 10,4)</td>
<td>14,3 (9,9; 18,0)</td>
<td>3,0 (1,1; 14,0)</td>
</tr>
<tr>
<td>3</td>
<td>50-59 (n=22)</td>
<td>20,4 (11,5; 78,9)</td>
<td>6,1 (5,3; 8,9)</td>
<td>3,1 (1,5; 9,2)</td>
<td>26,9 (3,0; 47,0)</td>
</tr>
<tr>
<td>4</td>
<td>60-69 (n=18)</td>
<td>69,0 (19,3; 95,2)</td>
<td>11,1 (5,2; 16,5)</td>
<td>3,6 (1,7; 10,5)</td>
<td>26,8 (3,1; 47,0)</td>
</tr>
<tr>
<td>5</td>
<td>70-79 (n=14)</td>
<td>16,9 (12,4; 50,0)</td>
<td>9,3 (6,0; 27,9)</td>
<td>1,8 (1,4; 3,4)</td>
<td>46,0 (21,4; 54,0)</td>
</tr>
<tr>
<td>6</td>
<td>Старше 80 (n=4)</td>
<td>44,9 (17,4; 129,3)</td>
<td>10,5 (8,7; 19,0)</td>
<td>4,5 (2,1; 6,6)</td>
<td>35,6 (19,3; 39,5)</td>
</tr>
</tbody>
</table>

p1-3 = 0,0188 p1-5 = 0,0322 p2-1,3,4,5,6>0,05 p5-1,4>0,05 p1-5 = 0,0181 p2-5 = 0,0321

При оценке различий между полученными показателями выявлено, что достоверно (p<0,05) различаются медианы пепсиногена I у пациентов 20-39 и 50-59, 70-79 лет, а также медианы гастрина-17 у пациентов 70-79 и 20-39, 40-49 лет. Достоверных различий между средними показателями пепсиногена II не выявлено. Отношение пепсиногена I/II было снижено у пациентов 70-79 лет, достоверные различия выявлены с пациентами 20-39 и 60-69 лет. Кроме того, достоверно от всех остальных отличалась группа 40-49 лет. Следует отметить, что группы пациентов 40-49 лет и старше 80 лет представлены больными, не инфицированными инфекцией H.pylori.

Корреляционный анализ позволил выявить достоверную положительную связь средней силы между возрастом и гастрином-17, а также достоверную отрицательную связь между возрастом и соотношением пепсиноген I/II (Таблица 23). Между другими серологическими показателями и возрастом достоверных связей не определено.
Таблица 23

<table>
<thead>
<tr>
<th>Сравнение</th>
<th>Коэффициент Спирмена</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пепсиноген I</td>
<td>-0,16</td>
<td>0,1793</td>
</tr>
<tr>
<td>Пепсиноген II</td>
<td>0,16</td>
<td>0,1899</td>
</tr>
<tr>
<td>Пепсиноген I/II</td>
<td>-0,28</td>
<td>0,0151</td>
</tr>
<tr>
<td>Гастрин-17</td>
<td>0,33</td>
<td>0,0047</td>
</tr>
</tbody>
</table>

При оценке наличия корреляции между самими серологическими маркерами выявлена положительная высокая связь между пепсиногеном I и пепсиногеном II (коэффициент корреляции Спирмена 0,53, p<0,0001), а также высокая отрицательная связь между пепсиногеном I и гастрином-17 (коэффициент корреляции Спирмена -0,68, p<0,0001) (Рисунок 26).

Рисунок 26 – График зависимости уровня пепсиногена II (слева) и гастрином-17 (справа) от показателей пепсиногена I

Кроме того, между соотношением пепсиноген I/II и пепсиногеном I выявлена положительная высокая корреляционная связь (коэффициент корреляции Спирмена 0,76, p<0,0001) и отрицательная корреляционная связь между соотношением пепсиноген I/II и гастрином-17 (коэффициент корреляции Спирмена -0,77, p<0,0001).

Медианы серологических показателей у пациентов без аутоиммунных заболеваний и без АПК не выходили за рамки нормальных значений: пепсиноген I 86,7 мкг/л, пепсиноген II 7,27 мкг/л, пепсиноген I/II 7,27, гастрин-17 1,78 пмоль/л.
3.6.1 Оценка серологических маркеров атрофии слизистой оболочки желудка в зависимости от показателей клинического анализа крови

В ходе анализа данных было выявлено 8 случаев анемии у пациентов с АПК. Медиана пепсиногена I у них составила 16,4 мкг/л, что меньше референсных значений (30-165). Среднее значение пепсиногена II укладывалось в нормальные показатели и составило 6,0 мкг/л. Касаемо медианы гастрина-17, выявлено 4х-кратное превышение нормы - 44,0 пмоль/л.

Интересной представляется оценка показателей пепсиногенов и гастрина-17 у пациентов в зависимости от других гематологических показателей (Таблица 24).

Таблица 24

Медианы показателей пепсиногена I, пепсиногена II и гастрина-17 у пациентов с различными ЦП, MCH и MCV, Me (25; 75) процентиль

<table>
<thead>
<tr>
<th></th>
<th>Низкий показатель</th>
<th>Норма</th>
<th>Высокий показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td>ЦП</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=9</td>
<td>39,1 (17,3; 77,6)</td>
<td>59,6 (15,6; 91,2)</td>
<td>9,2 (7,9; 15,8)</td>
</tr>
<tr>
<td>n=57</td>
<td>11,0 (6,5; 17,9)</td>
<td>8,7 (5,6; 16,5)</td>
<td>6,0 (6,0; 8,8)</td>
</tr>
<tr>
<td>n=5</td>
<td>2,2 (1,6; 4,2)</td>
<td>3,9 (1,8; 8,8)</td>
<td>1,5 (1,4; 1,8)</td>
</tr>
<tr>
<td>Гастрина-17, пмоль/л</td>
<td>39,0 (14,8; 47,0)</td>
<td>23,9 (3,0; 39,0)</td>
<td>49,0 (47,0; 58,0)</td>
</tr>
<tr>
<td>MCH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=3</td>
<td>17,3 (8,3; 77,6)</td>
<td>56,5 (17,0; 91,2)</td>
<td>11,4 (7,9; 15,8)</td>
</tr>
<tr>
<td>n=62</td>
<td>11,0 (6,5; 22,2)</td>
<td>8,8 (5,6; 17,9)</td>
<td>6,0 (4,3; 8,8)</td>
</tr>
<tr>
<td>n=6</td>
<td>1,6 (1,3; 3,5)</td>
<td>4,1 (1,8; 9,2)</td>
<td>1,7 (1,4; 2,6)</td>
</tr>
<tr>
<td>Гастрина-17, пмоль/л</td>
<td>47,0 (39,0; 54,0)</td>
<td>22,2 (3,0; 39,0)</td>
<td>52,5 (47,0; 58,0)</td>
</tr>
<tr>
<td>MCV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=2</td>
<td>23,7 (8,3; 39,1)</td>
<td>60,1 (17,9; 91,2)</td>
<td>13,6 (8,5; 19,3)</td>
</tr>
<tr>
<td>n=57</td>
<td>12,2 (6,5; 17,9)</td>
<td>8,9 (5,6; 22,2)</td>
<td>6,3 (5,8; 9,5)</td>
</tr>
<tr>
<td>n=12</td>
<td>1,7 (1,3; 2,2)</td>
<td>4,2 (1,8; 9,2)</td>
<td>1,6 (1,4; 2,9)</td>
</tr>
<tr>
<td>Гастрина-17, пмоль/л</td>
<td>30,9 (14,8; 47,0)</td>
<td>22,9 (3,0; 39,0)</td>
<td>47,0 (36,7; 57,0)</td>
</tr>
</tbody>
</table>
Отмечено, что медиана гастрин-17 была выше нормы во всех подгруппах пациентов. Кроме того, обращают на себя внимание низкие значения медиан пепсиногена I у пациентов с макроцитозом и гиперхромией. Группы пациентов с низкими значениями MCH и MCV оценить сложно в связи с малым количеством пациентов в них. Достоверные различия получены между медианами пепсиногена I в группах пациентов с нормальным и высоким ЦП (р=0,0207), в группах с нормальным и высоким MCH (р=0,0107), в группах с нормальным и высоким MCV (р=0,0031). В связи с полученными данными медиан PG I схожими были и результаты сравнения отношения пепсиногена I/II: достоверная разница получена в группах пациентов с нормальным и высоким ЦП (р=0,00207), в группах с нормальным и высоким MCH (р=0,0290), в группах с нормальным и высоким MCV (р=0,0176). Относительно медиан гастрин-17 получены аналогичные данные: достоверная разница получена в группах пациентов с нормальным и высоким ЦП (р=0,0048), в группах с нормальным и высоким MCH (р=0,0017), в группах с нормальным и высоким MCV (р=0,0078).

Корреляционный анализ выявил положительную связь средней силы между пепсиногеном I и гемоглобином (коэффициент корреляции Спирмена 0,26, р=0,0256), а также количеством эритроцитов (коэффициент корреляции Спирмена 0,34, р=0,0030). Достоверная корреляционная связь обнаружена лишь у пепсиногена II и количества эритроцитов (коэффициент корреляции Спирмена 0,24, р=0,0378). Отрицательная корреляционная связь выявлена между гастрином-17 и гемоглобином (коэффициент корреляции Спирмена -0,31, р=0,0076), количеством эритроцитов (коэффициент корреляции Спирмена -0,25, р=0,0351). Между другими показателями достоверных связей не выявлено.
3.6.2 Оценка серологических маркеров атрофии слизистой оболочки желудка в зависимости от показателей биохимического анализа крови

Для оценки серологических маркеров атрофии в зависимости от биохимических показателей все пациенты были разделены на группы: с нормальными и сниженными значениями железа, витамина В12. Сводные данные представлены в Таблице 25.

Медианы показателей пепсиногена I, пепсиногена II и гастрина-17 у пациентов со сниженными и нормальными показателями железа и цианокобаламина, Me (25; 75) процентиль

<table>
<thead>
<tr>
<th>Железо</th>
<th>Пепсиноген I, мкг/л</th>
<th>Снижено (n=7)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Норма (n=64)</td>
<td>27,6 (13,7; 85,9)</td>
<td>77,6 (17,3; 106,2)</td>
<td>0,5120</td>
</tr>
<tr>
<td>Пепсиноген II, мкг/л</td>
<td>8,6 (5,6; 12,7)</td>
<td>17,9 (6,5; 22,6)</td>
<td>0,2030</td>
</tr>
<tr>
<td>Пепсиноген I/II</td>
<td>3,5 (1,7; 8,8)</td>
<td>3,5 (1,6; 6,4)</td>
<td>0,9078</td>
</tr>
<tr>
<td>Гастрин-17, пмоль/л</td>
<td>27,8 (3,1; 47,0)</td>
<td>27,0 (14,8; 47,0)</td>
<td>0,5243</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Цианокобаламин</th>
<th>Пепсиноген I, мкг/л</th>
<th>Снижено (n=12)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Норма (n=59)</td>
<td>60,1 (17,9; 92,8)</td>
<td>13,7 (8,5; 16,4)</td>
<td>0,0010</td>
</tr>
<tr>
<td>Пепсиноген II, мкг/л</td>
<td>8,7 (5,5; 22,2)</td>
<td>8,4 (6,0; 9,5)</td>
<td>0,3613</td>
</tr>
<tr>
<td>Пепсиноген I/II</td>
<td>4,2 (1,8; 9,2)</td>
<td>1,6 (1,4; 2,4)</td>
<td>0,0029</td>
</tr>
<tr>
<td>Гастрин-17, пмоль/л</td>
<td>22,9 (3,0; 42,0)</td>
<td>47,0 (36,7; 55,0)</td>
<td>0,0081</td>
</tr>
</tbody>
</table>

Медиана пепсиногена I у пациентов с нормальным содержанием железа была ниже референсных значений (27,6 мкг/л при норме выше 30 мкг/л). Однако при сравнении с пациентами с низким содержанием железа разница была не достоверной. При оценке по показателям витамина В12 медиана пепсиногена I была снижена в группе пациентов с дефицитом цианокобаламина и, кроме того, выявлена достоверная разница (p=0,0010) в сравнении с пациентами с нормальными биохимическими показателями. Показатели пепсиногена II не выходили за рамки нормальных значений. Выявлено снижение медианы
отношения пепсиногена I/II у пациентов с низкими показателями цианокобаламина, причем разница между пациентами с нормальным содержанием витамина В12 была достоверной (p=0,0029). Медианы гастрин-17 были выше референсных значений во всех группах. Достоверная разница (p=0,0081) была получена при сравнении пациентов с нормальным и низким уровнем витамина В12.

Корреляционный анализ выявил достоверную положительную корреляционную связь между пепсиногеном I и витамином В12 (коэффициент корреляции Спирмена 0,23, p=0,0517) и отрицательную связь средней силы между гастрином-17 и цианокобаламином (коэффициент корреляции Спирмена -0,27, p=0,0207). Достоверных связей между пепсиногеном II и биохимическими показателями выявлено не было. Определялась положительная корреляционная связь средней силы между отношением пепсиногена I/II и цианокобаламином (коэффициент корреляции Спирмена 0,3, p=0,0105).

3.6.3 Оценка серологических маркеров атрофии слизистой оболочке желудка у пациентов в зависимости от наличия инфекции H.pylori

Была предпринята попытка оценить серологические показатели атрофии у пациентов с АПК и с АПК и инфекцией H.pylori. В группе больных с АПК было 32 человека, медиана пепсиногена I была выше нормы, как и гастрин-17 (Таблица 26).

Таблица 26

<table>
<thead>
<tr>
<th>Группа</th>
<th>Всего (n=32)</th>
<th>20-39 (n=5)</th>
<th>40-49 (n=0)</th>
<th>50-59 (n=10)</th>
<th>60-69 (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Пепсиноген I, мкг/л</td>
<td>Пепсиноген II, мкг/л</td>
<td>Пепсиноген I/II</td>
<td>Гастрин-17, пмоль/л</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17,4 (8,5; 61,9)</td>
<td>6,2 (4,8; 9,1)</td>
<td>1,9 (1,5; 9,8)</td>
<td>40,0 (19,4; 54,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>47,3 (15,6; 81,4)</td>
<td>8,9 (6,4; 9,2)</td>
<td>3,9 (1,7; 9,2)</td>
<td>23,9 (8,7; 36,3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16,3 (9,2; 59,6)</td>
<td>5,8 (4,8; 6,5)</td>
<td>2,9 (1,5; 11,5)</td>
<td>40,0 (6,3; 47,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20,9</td>
<td>6,1</td>
<td>3,6</td>
<td>35,9</td>
<td></td>
</tr>
</tbody>
</table>
Рассматривая показатели пепсиногена I отмечено, что у больных в возрастных группах старше 50 лет медианы данного маркера ниже референсных значений. Показатели пепсиногена II не выходили за рамки нормы, а медианы гастрин-17 были повышены во всех группах. Соотношение пепсиногена I/II было ниже нормативных показателей в группах 50-59 и 70-79 лет, а также у пациентов с АПК в целом. Достоверная разница получена между медианами гастрин-17 у пациентов 20-29 и 70-79 лет (р=0,0284).

В Таблице 27 представлены средние показатели серологических маркеров у пациентов с АПК и инфекцией H.pylori.

<table>
<thead>
<tr>
<th></th>
<th>Пепсиноген I, мкг/л</th>
<th>Пепсиноген II, мкг/л</th>
<th>Пепсиноген I/II</th>
<th>Гастрин-17, пмоль/л</th>
</tr>
</thead>
<tbody>
<tr>
<td>Всего</td>
<td>73,7 (28,3; 106,2)</td>
<td>10,9 (6,5; 26,5)</td>
<td>4,2 (2,2; 7,1)</td>
<td>14,0 (2,9; 37,0)</td>
</tr>
<tr>
<td>1</td>
<td>106,2 (90,3; 118,6)</td>
<td>17,9 (10,3; 25,4)</td>
<td>6,6 (5,8; 8,7)</td>
<td>1,9 (1,5; 7,4)</td>
</tr>
<tr>
<td>2</td>
<td>73,0 (32,4; 149,5)</td>
<td>4,0 (3,3; 10,4)</td>
<td>14,3 (9,9; 18,0)</td>
<td>3,0 (1,1; 14,0)</td>
</tr>
<tr>
<td>3</td>
<td>57,0 (13,7; 80,9)</td>
<td>7,2 (5,7; 16,6)</td>
<td>3,1 (2,2 7,1)</td>
<td>13,1 (2,9; 42,0)</td>
</tr>
<tr>
<td>4</td>
<td>93,9 (47,1; 156,7)</td>
<td>21,5 (9,9; 34,1)</td>
<td>3,6 (2,6; 5,5)</td>
<td>23,5 (2,7; 34,3)</td>
</tr>
<tr>
<td>5</td>
<td>50,0 (17,9; 179)</td>
<td>27,9 (9,7; 36,5)</td>
<td>3,4 (1,6; 5,1)</td>
<td>21,4 (3,1; 47,0)</td>
</tr>
<tr>
<td>6</td>
<td>44,9 (17,4; 129,3)</td>
<td>10,5 (8,7; 19,0)</td>
<td>4,5 (2,1; 6,6)</td>
<td>35,6 (19,3; 39,5)</td>
</tr>
</tbody>
</table>

Рассмотрим полученность различий между медианами гастрин-17 у пациентов разных возрастных групп:
p1,4-3<0,05 p2,3-4<0,05 p1-2,5<0,05 p1-6=0,0500
Во всех возрастных группах медиана пепсиногена I не выходила за рамки нормальных значений. Достоверная разница по данному маркру получена между группами 50-59 и 20-39, 60-69 лет. Средние показатели пепсиногена II были повышены у пациентов 60-69 и 70-79 лет, которые достоверно отличались от остальных возрастных диапазонов. Медианы соотношения пепсиногена I/II не выходили за рамки нормальных значений, а достоверно от всех остальных отличалась группа 40-49 лет. Касаемо гастрлина-17, его медианы были повышены у лиц старше 50 лет, статистически значимая разница была выявлена между группой 20-39 и группой старше 80 лет (р=0,0500). Положительная корреляционная связь средней силы определена между возрастом и гастрином-17 у пациентов с АПК и инфекцией H.pylori (коэффициент корреляции Спирмена 0,39, р=0,0125).

Представлялось интересным сравнение серологических маркеров у пациентов с и без инфекции H.pylori между собой. Достоверно отличались (р<0,05) между собой показатели пепсиногена I у пациентов 60-69 и 70-79 лет (Рисунок 27). То же касается и значений пепсиногена II (Рисунок 28). Относительно гастрин-17 выявлено, что достоверно различны (р=0,0407) лишь группы пациентов в возрасте 70-79 лет.

Рисунок 27 – Сравнительная характеристика показателей пепсиногена I у пациентов различных возрастных групп с АПК и с АПК и инфекцией H.pylori

![Изображение](image.png)
Рисунок 28 – Сравнительная характеристика показателей пепсиногена II у пациентов различных возрастных групп с АПК и с АПК и инфекцией *H.pylori*

При проведении корреляционного анализа достоверных связей между возрастом и серологическими маркерами у пациентов с АПК не выявлено. Выявленные связи между собственно маркерами атрофии охарактеризованы в Таблице 28.

Таблица 28

<table>
<thead>
<tr>
<th>Серологические показатели</th>
<th>Коэффициент ранговой корреляции Спирмена ((r_s))</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Антитела к париетальным клеткам</td>
<td>Пепсиноген I</td>
<td>-0,47</td>
</tr>
<tr>
<td>Антитела к париетальным клеткам</td>
<td>Пепсиноген I/II</td>
<td>-0,49</td>
</tr>
<tr>
<td>Антитела к париетальным клеткам</td>
<td>Гастрин-17</td>
<td>0,54</td>
</tr>
<tr>
<td>Пепсиноген I</td>
<td>Пепсиноген I/II</td>
<td>0,86</td>
</tr>
<tr>
<td>Пепсиноген I</td>
<td>Гастрин-17</td>
<td>-0,81</td>
</tr>
<tr>
<td>Гастрин-17</td>
<td>Пепсиноген I/II</td>
<td>-0,83</td>
</tr>
</tbody>
</table>

У пациентов с АПК и инфекцией *H.pylori* достоверная корреляционная отрицательная связь выявлена между титром антител к париетальным клеткам и показателями пепсиногена I (коэффициент корреляции Спирмена \(-0,41, p=0,0078\)) и положительная корреляционная связь с показателями гастрин-17 (коэффициент
корреляции Спирмена 0,60, p<0,0001). Другие взаимосвязи представлены в Таблице 29.

Таблица 29

<table>
<thead>
<tr>
<th>Корреляционные связи</th>
<th>Коэффициенты ранговой корреляции Спирмена (r<sub>s</sub>)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Антитела к париетальным клеткам Пепсиноген I</td>
<td>-0,41</td>
<td>0,0078</td>
</tr>
<tr>
<td>Антитела к париетальным клеткам Пепсиноген I/II</td>
<td>-0,49</td>
<td>0,0013</td>
</tr>
<tr>
<td>Гастрин-17</td>
<td>0,60</td>
<td><0,0001</td>
</tr>
<tr>
<td>Пепсиноген I Пепсиноген II</td>
<td>0,57</td>
<td>0,0001</td>
</tr>
<tr>
<td>Пепсиноген I Пепсиноген I/II</td>
<td>0,63</td>
<td><0,0001</td>
</tr>
<tr>
<td>Пепсиноген I Гастрин-17</td>
<td>-0,42</td>
<td>0,0079</td>
</tr>
<tr>
<td>Гастрин-17 Пепсиноген I/II</td>
<td>-0,66</td>
<td><0,0001</td>
</tr>
</tbody>
</table>

Основная оценка средних показателей клинического и биохимического анализа крови у пациентов различных групп была приведена в соответствующих главах. Однако интересно отметить, что в группе пациентов с АПК дополнительно выявлены корреляционные связи между пепсиногеном I и MCV (коэффициент корреляции Спирмена 0,40, p=0,0212), пепсиногеном I и цианокобаламином (коэффициент корреляции Спирмена 0,37, p=0,0351), отношением пепсиноген I/II и витамином В12 (коэффициент корреляции Спирмена 0,38, p=0,0290), гастрином-17 и цианокобаламином (коэффициент корреляции Спирмена -0,44, p=0,0111). Между показателями клинического и биохимического анализа крови и маркерами атрофии у пациентов с АПК и инфекцией <i>H.pylori</i> достоверных корреляционных связей не выявлено.

У пациентов без АПК с и без инфекции <i>H.pylori</i> средние показатели серологических маркеров не выходили за рамки нормальных значений (Таблица 30).
Таблица 30
Средние показатели пепсиногена I, пепсиногена II и гастрина-17 у пациентов без аутоиммунных заболеваний и без АПК, Me (25;75) процентиль

<table>
<thead>
<tr>
<th></th>
<th>Пациенты без инфекции H. pylori (n=7)</th>
<th>Пациенты с инфекцией H. pylori (n=9)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пепсиноген I, мкг/л</td>
<td>95,2 (46,9; 190,0)</td>
<td>80,0 (60,0; 121,1)</td>
<td>0,5604</td>
</tr>
<tr>
<td>Пепсиноген II, мкг/л</td>
<td>4,7 (4,0; 15,5)</td>
<td>7,6 (6,3; 16,3)</td>
<td>0,3146</td>
</tr>
<tr>
<td>Пепсиноген I/II</td>
<td>15,4 (9,6; 17,5)</td>
<td>9,75 (7,7; 12,1)</td>
<td>0,0300</td>
</tr>
<tr>
<td>Гастрин-17, пмоль/л</td>
<td>1,7 (0,9; 18,0)</td>
<td>4,9 (0,9; 8,7)</td>
<td>0,9577</td>
</tr>
</tbody>
</table>

Достоверные различия были получены лишь по отношению пепсиноген I/II, что отражает разницу по значениям пепсиногена II и не свидетельствует о развитии атрофических изменений в теле желудка.

Представлялось интересным сравнить средние показатели серологических маркеров между пациентами без АПК и пациентами других групп (Таблица 31, 32, 33).

Таблица 31
Сравнение медиан серологических маркеров у пациентов без АПК и пациентов с АПК, Me (25; 75) процентиль

<table>
<thead>
<tr>
<th></th>
<th>Пациенты без АПК и H. pylori (n=7)</th>
<th>Пациенты с АПК (n=71)</th>
<th>p</th>
<th>Пациенты без АПК с инфекцией H. pylori (n=9)</th>
<th>Пациенты с АПК (n=71)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пепсиноген I, мкг/л</td>
<td>95,2 (46,9; 190,0)</td>
<td>39,1 (13,8; 87,5)</td>
<td>0,1784</td>
<td>80,0 (60,0; 121,1)</td>
<td>39,1 (13,8; 87,5)</td>
<td>0,0369</td>
</tr>
<tr>
<td>Пепсиноген II, мкг/л</td>
<td>4,7 (4,0; 15,5)</td>
<td>8,6 (5,6; 16,5)</td>
<td>0,1197</td>
<td>7,6 (6,3; 16,3)</td>
<td>8,6 (5,6; 16,5)</td>
<td>0,9817</td>
</tr>
<tr>
<td>Пепсиноген I/II</td>
<td>15,4 (9,6; 17,5)</td>
<td>3,5 (1,7; 8,7)</td>
<td>0,0004</td>
<td>9,75 (7,7; 12,1)</td>
<td>3,5 (1,7; 8,7)</td>
<td>0,0068</td>
</tr>
<tr>
<td>Гастрин-17, пмоль/л</td>
<td>1,7 (0,9; 18,0)</td>
<td>27,0 (3,1; 47,0)</td>
<td>0,0104</td>
<td>4,9 (0,9; 8,7)</td>
<td>27,0 (3,1; 47,0)</td>
<td>0,0033</td>
</tr>
</tbody>
</table>
Достоверные различия были выявлены по средним показателям пепсиногена I, отношению пепсиноген I/II и гастрина-17, при этом за верхний лимит нормы выходили лишь значения гастрина-17 у пациентов с АПК.

Таблица 32
Сравнение медиан серологических маркеров у пациентов без АПК и пациентов с АПК и без H.pylori, Me (25; 75) процентиль

<table>
<thead>
<tr>
<th></th>
<th>Пациенты без АПК и H.pylori (n=7)</th>
<th>Пациенты с АПК без H.pylori (n=32)</th>
<th>p</th>
<th>Пациенты без АПК с инфекцией H.pylori (n=9)</th>
<th>Пациенты с АПК без H.pylori (n=32)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пепсиноген I, мкг/л</td>
<td>95,2 (46,9; 190,0)</td>
<td>17,4 (8,5; 61,9)</td>
<td>0,0038</td>
<td>80,0 (60,0; 121,1)</td>
<td>17,4 (8,5; 61,9)</td>
<td>0,0023</td>
</tr>
<tr>
<td>Пепсиноген II, мкг/л</td>
<td>4,7 (4,0; 15,5)</td>
<td>6,2 (4,8; 9,1)</td>
<td>0,4868</td>
<td>7,6 (6,3; 16,3)</td>
<td>6,2 (4,8; 9,1)</td>
<td>0,2192</td>
</tr>
<tr>
<td>Пепсиноген I/II</td>
<td>15,4 (9,6; 17,5)</td>
<td>1,9 (1,5; 9,8)</td>
<td>0,0011</td>
<td>9,75 (7,7; 12,1)</td>
<td>1,9 (1,5; 9,8)</td>
<td>0,0128</td>
</tr>
<tr>
<td>Гастрин-17, пмоль/л</td>
<td>1,7 (0,9; 18,0)</td>
<td>40,0 (19,4; 54,0)</td>
<td>0,0042</td>
<td>4,9 (0,9; 8,7)</td>
<td>40,0 (19,4; 54,0)</td>
<td>0,0006</td>
</tr>
</tbody>
</table>

У пациентов с АПК и без инфекции H.pylori средние показатели пепсиногена I, отношения пепсиноген I/II были ниже нормальных значений и достоверно отличались от пациентов без АПК вне зависимости от наличия инфекции H.pylori.

Таблица 33
Сравнение медиан серологических маркеров у пациентов без АПК и пациентов с АПК и инфекцией H.pylori, Me (25; 75) процентиль

<table>
<thead>
<tr>
<th></th>
<th>Пациенты без АПК и H.pylori (n=7)</th>
<th>Пациенты с АПК и H.pylori (n=39)</th>
<th>p</th>
<th>Пациенты без АПК с инфекцией H.pylori (n=9)</th>
<th>Пациенты с АПК и H.pylori (n=39)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пепсиноген I, мкг/л</td>
<td>95,2 (46,9; 190,0)</td>
<td>73,7 (28,3; 106,2)</td>
<td>0,0038</td>
<td>80,0 (60,0; 121,1)</td>
<td>73,7 (28,3; 106,2)</td>
<td>0,2846</td>
</tr>
<tr>
<td>Пепсиноген II, мкг/л</td>
<td>4,7 (4,0; 15,5)</td>
<td>10,9 (6,5; 26,5)</td>
<td>0,0322</td>
<td>7,6 (6,3; 16,3)</td>
<td>10,9 (6,5; 26,5)</td>
<td>0,2847</td>
</tr>
<tr>
<td>Пепсиноген I/II</td>
<td>15,4 (9,6; 17,5)</td>
<td>4,2 (2,2; 7,1)</td>
<td>0,0005</td>
<td>9,75 (7,7; 12,1)</td>
<td>4,2 (2,2; 7,1)</td>
<td>0,0092</td>
</tr>
<tr>
<td>Гастрин-17, пмоль/л</td>
<td>1,7 (0,9; 18,0)</td>
<td>14,0 (2,9; 37,0)</td>
<td>0,0361</td>
<td>4,9 (0,9; 8,7)</td>
<td>14,0 (2,9; 37,0)</td>
<td>0,0256</td>
</tr>
</tbody>
</table>
3.6.4 Оценка показателей клинического и биохимического анализа крови, частоты \textit{H.pylori} у пациентов с атрофическим гастритом тела желудка

Пепсиноген I используется в качестве серологического маркера атрофических изменений слизистой оболочки тела желудка. Из 71 пациента с АПК нормальный уровень пепсиногена I на момент обследования был выявлен лишь у 30 (42,3%), у 34 больных он был снижен (47,9%), а у 7 – повышен (9,8%). Представлялась интересной оценка показателей биохимического и клинического анализа крови в зависимости от степени атрофических изменений, в связи с этим пациенты со сниженными показателями пепсиногена I были дополнительно распределены на три подгруппы. Полученные показатели пациентов представлены в таблице (Таблица 34).

Таблица 34

<table>
<thead>
<tr>
<th>PG I, мкг/л</th>
<th>0-10 (n=11)</th>
<th>10-20 (n=17)</th>
<th>20-30 (n=6)</th>
<th>30-165 (n=30)</th>
<th>Больше 165 (n=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Возраст, лет</td>
<td>58</td>
<td>66</td>
<td>64,5</td>
<td>57</td>
<td>68</td>
</tr>
<tr>
<td>Hb, г/л</td>
<td>128 (120,6; 133,2)</td>
<td>134,1 (127,0; 136,9)</td>
<td>136,5 (127,2; 164,1)</td>
<td>138,2 (132,1; 145,8)</td>
<td>139,0 (129,3; 142,7)</td>
</tr>
<tr>
<td>RBC, х10^{12}/л</td>
<td>4,1 (3,6; 4,4)</td>
<td>4,2 (4,0; 4,7)</td>
<td>4,3 (4,0; 5,4)</td>
<td>4,6 (4,3; 4,8)</td>
<td>4,4 (4,2; 4,6)</td>
</tr>
<tr>
<td>ЦП</td>
<td>0,94 (0,91; 1,08)</td>
<td>0,93 (0,87; 0,97)</td>
<td>0,95 (0,92; 0,96)</td>
<td>0,92 (0,87; 0,93)</td>
<td>0,93 (0,91; 0,93)</td>
</tr>
<tr>
<td>MCV, фл</td>
<td>91,4 (87,6; 108,5)</td>
<td>90,7 (89,6; 96,0)</td>
<td>92,4 (88,8; 94,6)</td>
<td>89,4 (86,8; 91,9)</td>
<td>90,2 (88,7; 93,2)</td>
</tr>
<tr>
<td>MCH, пг</td>
<td>31,6 (30,0; 36,5)</td>
<td>31,0 (29,1; 32,6)</td>
<td>31,9 (30,8; 32,3)</td>
<td>30,9 (29,1; 31,6)</td>
<td>31,0 (30,8; 31,4)</td>
</tr>
<tr>
<td>MCHC, г/дл</td>
<td>34,2 (33,4; 34,8)</td>
<td>33,7 (32,7; 34,1)</td>
<td>34,0 (33,7; 34,1)</td>
<td>33,9 (33,2; 34,7)</td>
<td>34,1 (33,6; 35,4)</td>
</tr>
<tr>
<td>Железо, ммоль/л</td>
<td>15 (10,9; 23,0)</td>
<td>18,6 (15,8; 20,0)</td>
<td>18,0 (16,0; 23,0)</td>
<td>15,5 (11,0; 21,2)</td>
<td>19,9 (15,0; 20,4)</td>
</tr>
<tr>
<td>Витамин B12, пг/мл</td>
<td>315 (124,0; 478,0)</td>
<td>367,0 (142,0; 534,0)</td>
<td>351,0 (254,0; 532,0)</td>
<td>501,0 (373,0; 635,0)</td>
<td>432,0 (369,0; 704,0)</td>
</tr>
</tbody>
</table>
Гастрин-17

Рисунок 29 – Медианы гастрин-17 у пациентов с различными значениями пепсиногена I

Подводя итоги распространенности инфекции H. pylori у пациентов с различным уровнем пепсиногена I, было установлено, что наибольшая распространенность инфекции выявлена у пациентов с высокими значениями пепсиногена I (85,7%), а наименьшая у пациентов с крайне низкими значениями пепсиногена I (18,2%). Достоверная разница (χ² Пирсона, p<0,05) была получена между группами с

За рамки референсных значений выходили медианы пепсиногена II у пациентов с высокими значениями пепсиногена I, а также медианы гастрин-17 у пациентов всех групп с ненормальными значениями пепсиногена I.

При проведении сравнительного анализа у пациентов с нормальными и крайне низкими значениями пепсиногена I выявлена достоверная разница между показателями гемоглобина (p=0,0158) и количества эритроцитов (p=0,0016). Достоверно от всех остальных групп (p<0,05) отличались значения пепсиногена II в группе пациентов с высокими значениями пепсиногена I, а также значения гастрин-17 у пациентов с крайне низкими значениями пепсиногена I (Рисунок 29).

<table>
<thead>
<tr>
<th>PG II, мкг/л</th>
<th>G17, пмоль/л</th>
<th>H. pylori</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,2 (4,8; 6,5)</td>
<td>58,0 (47,0; 62,0)</td>
<td>18,2%</td>
</tr>
<tr>
<td>8,0 (5,8; 10,9)</td>
<td>45,0 (37,0; 47,0)</td>
<td>41,2%</td>
</tr>
<tr>
<td>8,1 (4,2; 11,1)</td>
<td>26,9 (3,1; 42,0)</td>
<td>50%</td>
</tr>
<tr>
<td>10,0 (5,2; 17,9)</td>
<td>5,3 (2,1; 22,9)</td>
<td>70%</td>
</tr>
<tr>
<td>36,5 (35,1; 47,0)</td>
<td>28,7 (3,1; 34,2)</td>
<td>85,7%</td>
</tr>
</tbody>
</table>

Распространенность инфекции H. pylori у пациентов с различным уровнем пепсиногена I:
низкими значениями пепсиногена I и нормальными/высокими значениями данного показателя (Рисунок 30).

Рисунок 30 – Инфицированность H.pylori пациентов с АПК с различными показателями пепсиногена I

Представлялось интересным сравнить показатели клинического анализа крови, железа и витамина В12, а также инфицированность H.pylori у пациентов с атрофическим поражением слизистой оболочки тела желудка (низким значением пепсиногена I) и пациентами с нормальными показателями пепсиногена I (Таблица 35).

<table>
<thead>
<tr>
<th>Медианы показателей клинического и биохимического анализа крови у пациентов с различным уровнем пепсиногена I, Me (25; 75) процентиль</th>
<th>Нормальные значения пепсиногена I (n=30)</th>
<th>Низкие значения пепсиногена I (n=34)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Возраст, лет</td>
<td>57</td>
<td>62</td>
<td>0,0113</td>
</tr>
<tr>
<td>Hb, г/л</td>
<td>138,2 (132,1; 145,8)</td>
<td>133,1 (124,4; 137,8)</td>
<td>0,0324</td>
</tr>
<tr>
<td>RBC, х10^{12}/л</td>
<td>4,6 (4,3; 4,8)</td>
<td>4,2 (3,9; 4,5)</td>
<td>0,0048</td>
</tr>
<tr>
<td>ЦП</td>
<td>0,92 (0,87; 0,93)</td>
<td>0,94 (0,88; 0,97)</td>
<td>0,0607</td>
</tr>
<tr>
<td>MCV, фл</td>
<td>89,4 (86,8; 91,9)</td>
<td>90,6 (89,1; 96,6)</td>
<td>0,0395</td>
</tr>
<tr>
<td>MCH, пг</td>
<td>30,9</td>
<td>31,1</td>
<td>0,1353</td>
</tr>
</tbody>
</table>
Было выявлено, что пациенты с атрофическим гастритом достоверно старше пациентов с неизмененной слизистой. Несмотря на нормальные значения, достоверно различались средние значения гемоглобина и количества эритроцитов, MCV, пепсиногена II. Был выявлен достоверно более низкий уровень витамина B12 у пациентов с низкими значениями пепсиногена I в сравнении с пациентами без атрофических изменений (359 пг/мл и 501 пг/мл соответственно, p=0,0226), хотя и не выходил за границы нормальных значений. Маркеры атрофических изменений (пепсиноген I/II и гастрин-17) достоверно отличались между изучаемыми группами, что отражало низкие показатели пепсиногена I.

Кроме того, проводилась оценка доли больных с патологическими изменениями показателей клинического и биохимического анализа крови у пациентов с атрофическими изменениями слизистой оболочки тела желудка (Таблица 36).
Таблица 36
Сравнительная характеристика пациентов с различным уровнем пепсиногена I, Me (25; 75) процентиль

<table>
<thead>
<tr>
<th></th>
<th>Нормальные значения пепсиногена I (n=30)</th>
<th>Низкие значения пепсиногена I (n=34)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Анемия</td>
<td>2 (6,6%)</td>
<td>6 (17,6%)</td>
<td>0,1850</td>
</tr>
<tr>
<td>ЦПП</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>высокий</td>
<td></td>
<td>↑5 (14,7%)</td>
<td>-</td>
</tr>
<tr>
<td>низкий</td>
<td>↓5 (16,7%)</td>
<td>↓4 (11,8%)</td>
<td>0,5735</td>
</tr>
<tr>
<td>MCH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>высокий</td>
<td></td>
<td>↑6 (17,6%)</td>
<td>-</td>
</tr>
<tr>
<td>низкий</td>
<td>↓1 (3,3%)</td>
<td>↓2 (5,9%)</td>
<td>0,6302</td>
</tr>
<tr>
<td>MCV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>высокий</td>
<td>↑2 (6,6%)</td>
<td>↑9 (26,5%)</td>
<td>0,0361</td>
</tr>
<tr>
<td>низкий</td>
<td>↓1 (3,3%)</td>
<td>↓1 (2,9%)</td>
<td>0,9283</td>
</tr>
<tr>
<td>Железо</td>
<td>↓5 (16,7%)</td>
<td>↓2 (5,9%)</td>
<td>0,1678</td>
</tr>
<tr>
<td>Витамин В12</td>
<td>↓1 (3,3%)</td>
<td>↓11 (32,4%)</td>
<td>0,0030</td>
</tr>
</tbody>
</table>

Достоверные различия между пациентами с нормальными и низкими значениями пепсиногена I были получены по распространенности макроцитоза и дефицита витамина B12.

Учитывая наличие *H.pylori* пациенты с низкими значениями пепсиногена I были разделены на две группы с целью оценки влияния инфекции на течение атрофического гастрита (Таблица 37).

Таблица 37
Медианы показателей клинического и биохимического анализа крови у пациентов с низким уровнем пепсиногена I в зависимости от наличия инфекции *H.pylori*, Me (25; 75) процентиль

<table>
<thead>
<tr>
<th></th>
<th>Инфекция H.pylori (n=12)</th>
<th>Без инфекции H.pylori (n=22)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Возраст, лет</td>
<td>64,5</td>
<td>61,5</td>
<td>0,4878</td>
</tr>
<tr>
<td>Hb, г/л</td>
<td>135,9 (127,3; 146,2)</td>
<td>131,7 (124,0; 136,1)</td>
<td>0,1913</td>
</tr>
<tr>
<td>RBC, х10^12/л</td>
<td>4,3</td>
<td>4,1</td>
<td>0,1567</td>
</tr>
</tbody>
</table>
Показатели пепсиногена I и отношения пепсиноген I/II были ниже нормальных значений в обеих группах и достоверно не отличались между собой. Достоверно выше был уровень гастрин-17 с пациентов с атрофическим гастритом и без *H. pylori* в сравнении с больными с наличием данной инфекции (47,5 пмоль/л и 40,0 пмоль/л соответственно, р=0,0251), хотя значения данного маркера были выше в обеих группах.

При сравнении количества пациентов с измененными показателями клинического и биохимического анализа крови у пациентов с низкими значениями пепсиногена I в зависимости от наличия инфекции *H.pylori* достоверных различий выявлено не было (Таблица 38).

<table>
<thead>
<tr>
<th></th>
<th>(4,1; 4,8)</th>
<th>(3,6; 4,5)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ЦП</td>
<td>0,94 (0,87; 0,96)</td>
<td>0,94 (0,91; 0,99)</td>
<td>0,2923</td>
</tr>
<tr>
<td>MCV, фл</td>
<td>90,8 (88,7; 93,9)</td>
<td>91,0 (89,1; 105,8)</td>
<td>0,4230</td>
</tr>
<tr>
<td>MCH, пг</td>
<td>30,8 (29,2; 32,1)</td>
<td>31,6 (30,0; 35,7)</td>
<td>0,1792</td>
</tr>
<tr>
<td>MCHC, г/дл</td>
<td>34,1 (33,3; 34,3)</td>
<td>33,9 (32,9; 34,4)</td>
<td>0,7358</td>
</tr>
<tr>
<td>Железо, мкмоль/л</td>
<td>19,3 (12,4; 21,4)</td>
<td>18,0 (14,1; 21,0)</td>
<td>0,7358</td>
</tr>
<tr>
<td>Витамин В12, пг/мл</td>
<td>426,5 (282,0; 646,0)</td>
<td>332,0 (107,0; 478,0)</td>
<td>0,1567</td>
</tr>
<tr>
<td>PG I, мкг/л</td>
<td>15,4 (12,6; 20,1)</td>
<td>13,0 (6,8; 17,4)</td>
<td>0,1792</td>
</tr>
<tr>
<td>PG II, мкг/л</td>
<td>7,8 (5,9; 10,4)</td>
<td>6,2 (4,8; 8,9)</td>
<td>0,2172</td>
</tr>
<tr>
<td>PG I/II</td>
<td>1,9 (1,4; 2,5)</td>
<td>1,6 (1,0; 1,9)</td>
<td>0,5105</td>
</tr>
<tr>
<td>G17, пмоль/л</td>
<td>40,0 (24,2; 46,0)</td>
<td>47,5 (39,0; 58,0)</td>
<td>0,0251</td>
</tr>
</tbody>
</table>
Таблица 38

Сравнительная характеристика пациентов с низким уровнем пепсиногена I в зависимости от наличия *H. pylori*, Мe (25; 75) процентиль

<table>
<thead>
<tr>
<th></th>
<th>Инфекция H. pylori (n=12)</th>
<th>Без инфекции H. pylori (n=22)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Анемия</td>
<td>-</td>
<td>4 (18,2%)</td>
<td>-</td>
</tr>
<tr>
<td>ЦП</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>высокий</td>
<td>-</td>
<td>↑5 (22,7%)</td>
<td>-</td>
</tr>
<tr>
<td>низкий</td>
<td>↓1 (8,3%)</td>
<td>↓3 (13,6%)</td>
<td>0,6465</td>
</tr>
<tr>
<td>MCH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>высокий</td>
<td>-</td>
<td>↑6 (27,3%)</td>
<td>-</td>
</tr>
<tr>
<td>низкий</td>
<td>↓1 (8,3%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>высокий</td>
<td>↑1 (8,3%)</td>
<td>↑8 (36,4%)</td>
<td>0,0767</td>
</tr>
<tr>
<td>низкий</td>
<td>↓1 (8,3%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Железо</td>
<td>↓1 (8,3%)</td>
<td>↓1 (4,5%)</td>
<td>0,6537</td>
</tr>
<tr>
<td>Витамин B12</td>
<td>↓2 (16,7%)</td>
<td>↓9 (40,9%)</td>
<td>0,1488</td>
</tr>
</tbody>
</table>

Однако среди пациентов с АПК и без *H. pylori* было выявлено 4 случая развития анемии на фоне атрофических изменений в теле желудка, а также 5 пациентов с высокими значениями ЦП и 6 пациентов с высокими значениями MCH, в то время как среди пациентов с *H. pylori* подобных изменений не было выявлено вовсе.

3.7 Характеристика данных эндоскопического исследования

Эзофагогастродуоденоскопия проводилась с целью визуальной оценки слизистой оболочки верхних отделов желудочно-кишечного тракта и при отсутствии противопоказаний взятия биоптатов для последующего морфологического исследования. ЭГДС была проведена 39 пациентам. У 32 пациентов на момент обследования были выявлены относительные противопоказания к данному исследованию (хроническая сердечно-сосудистая недостаточность тяжелой степени, нестабильная стенокардия, жизнеугрожающие
нарушения ритма и проводимости сердца) в связи с чем диагностическая ЭГДС проведена не была.

Основные эндоскопические характеристики слизистой оболочки верхних отделов желудочно-кишечного тракта представлены в Таблице 39.

Таблица 39

Эндоскопическая характеристика пациентов с АПК

<table>
<thead>
<tr>
<th>Данные ЭГДС</th>
<th>H.pylori</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Катаральный рефлюкс-эзофагит</td>
<td>16</td>
</tr>
<tr>
<td>Грыжа пищеводного отверстия диафрагмы</td>
<td>3</td>
</tr>
<tr>
<td>Варикозное расширение вен пищевода</td>
<td>3</td>
</tr>
<tr>
<td>Эрозивный гастрит</td>
<td>9</td>
</tr>
<tr>
<td>Антральный гастрит</td>
<td>35</td>
</tr>
<tr>
<td>Атрофический антральный гастрит</td>
<td>17</td>
</tr>
<tr>
<td>Кисечная метаплазия</td>
<td>3</td>
</tr>
<tr>
<td>Полипы желудка</td>
<td>4</td>
</tr>
<tr>
<td>Портальная гастропатия</td>
<td>1</td>
</tr>
<tr>
<td>Дуодено-гастральный рефлюкс</td>
<td>24</td>
</tr>
<tr>
<td>Язвенная болезнь двенадцатиперстной кишки</td>
<td>5</td>
</tr>
</tbody>
</table>

По результатам эндоскопического исследования у 31% (16) пациентов выявлен катаральный рефлюкс-эзофагит, а у 3 больных – грыжа пищеводного отверстия диафрагмы. У 3 из 7 пациентов с аутоиммунными заболеваниями печени были выявлены варикозно расширенные вены пищевода различной степени.

Пять пациентов были госпитализированы с связи с обострением язвенной болезни двенадцатиперстной кишки, что было подтверждено при ЭГДС. Стоит отметить, что активная инфекция H.pylori была выявлена лишь у 2 из них.

Наибольший интерес представляет визуальная оценка слизистой оболочки желудка. Эрозии желудка были выявлены у 9 пациентов, в том числе у 3 с инфекцией H.pylori. Язв желудка при ЭГДС отмечено не было. Воспалительные
изменения слизистой оболочки антрального отдела обнаружены у 89,7% (35) больных, у 14 из которых они связаны с *H.pylori*. Признаки атрофических изменений слизистой оболочки при рутинной эндоскопии (истончение слизистой, обеднение сосудистого рисунка) были выявлены у 17 пациентов (43,6%), лишь у 5 из которых выявлен *H.pylori*. У трех пациентов признаки атрофии слизистой оболочки желудка сопровождались наличием участков, подозрительных на кишечную метаплазию, а у 4-х пациентов выявлены полипы желудка размерами до 1 см.

3.8 Результаты морфологического исследования слизистой оболочки желудка у пациентов с АПК

Морфологическая оценка слизистой оболочки желудка была проведена у 15 пациентов. У 4 больных представлялось возможным оценить динамику патологических изменений: максимальный период наблюдения составил 4 года.

3.8.1 Результаты морфологического исследования слизистой оболочки тела желудка

При рутинном исследовании у 3 пациентов атрофических изменений слизистой оболочки тела желудка не выявлено, что согласуется с нормальными показателями сывороточного пепсиногена I и витамина В12. Показатели гастрина-17 были выше нормы у двух пациенток (36 и 46 лет), при обследовании которых выявлена активная инфекция *H.pylori*. У третьей пациентки 69 лет гастрин-17 не выходил за рамки референсных значений, а тесты на *H.pylori* были отрицательные.

У 5 пациентов отмечена слабая степень атрофии (I), которая проявлялась очаговым истончением слизистой оболочки и уменьшением глубины желез желудка. Стоит отметить, что у 5 из 6 пациентов сохранялся нормальный уровень пепсиногена I. Гипергастринемия выявлена у 2 пациентов с низкими значениями сывороточного кобаламина. На момент обследования *H.pylori* был выявлен у 3 больных.
Данные биопсий 6 пациентов свидетельствовали о развитии умеренной атрофии в слизистой оболочке тела желудка: уменьшение глубины желез, развитие выраженной лимфоцитарной инфильтрации без полиморфных лейкоцитов вплоть до формирования лимфоидных фолликулов (Рисунок 31).

Рисунок 31 – Лимфоцитарная инфильтрация слизистой оболочки тела желудка у пациента с аутоиммунным гастритом, окраска гематоксилином и эозином х200 (данные предоставлены профессором, д.м.н. Тертычным А.С.)

В 2 случаях выявлено развитие кишечной метаплазии в теле желудка. Показатели пепсиногена I были снижены, а гастрин-17 – повышены. У 5 из 6 пациентов отмечено снижение уровня сывороточного витамина B12 с развитием макроцитоза у 3 больных и тяжелой мегалобластной анемии у одного пациента 71 года. Инфекция *H.pylori* присутствовала у 2 пациентов.

Выраженная атрофия выявлена у 1 пациентки 58 лет с низким уровнем пепсиногена I, гипергастринемией и высоким средним объемом эритроцитов. При этом в теле желудка отмечено появление участков кишечной метаплазии. Инфекции *H.pylori* не выявлено.

Ни у одного пациента не было выявлено участков гиперплазии ЭХП-клеток, карциноида, явлений дисплазии эпителия. У двух пациентов с умеренной атрофией
слизистой оболочки тела желудка выявлены гиперплазические полипы. Результаты морфологического исследования представлены в Таблице 40.

Таблица 40

Морфологическая характеристика слизистой оболочки тела желудка пациентов с АПК

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Степень атрофических изменений в теле желудка</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Нет (0) (n=3)</td>
</tr>
<tr>
<td>Возраст</td>
<td>36, 46, 69</td>
</tr>
<tr>
<td>Гемоглобин</td>
<td>N</td>
</tr>
<tr>
<td>Витамин В12</td>
<td>N</td>
</tr>
<tr>
<td>Железо</td>
<td>N</td>
</tr>
<tr>
<td>Пепсиноген І</td>
<td>N</td>
</tr>
<tr>
<td>Гастрин-17</td>
<td>↑2</td>
</tr>
<tr>
<td>(H.pylori)</td>
<td>2</td>
</tr>
<tr>
<td>Кишечная метаплазия</td>
<td>-</td>
</tr>
</tbody>
</table>

Достоверные различия были получены у пациентов без атрофических изменений и у пациентов с умеренной атрофией (\(p<0,05 \)) при оценке пепсиногена І (205,9 против 14,69) и гастрина-17 (28,7 против 44,5). В других группах и между другими показателями достоверных различий не получено. Стоит отметить, что в группе с тяжелой атрофией тела желудка был только 1 пациент, в связи с чем провести достоверный анализ не представлялось возможным.

3.8.2 Результаты морфологического исследования слизистой оболочки антрального отдела желудка

По данным морфологического исследования тяжелых атрофических изменений в антральном отделе желудка выявлено не было. Инфекция \(H.pylori \) была выявлена у пациентов со слабой атрофией или отсутствием патологических атрофических изменений в антральном отделе. Интересно, что повышение уровня пепсиногена ІІ было выявлено у двух пациентов с \(H.pylori \). Кроме того, у 11 пациентов выявлена гипергастринемия, что свидетельствует об отсутствии выраженной атрофии в
антральном отделе. Снижения показателей пепсиногена II и гастрин-17 отмечено не было. Участки кишечной метаплазии выявлены у 3 из 7 пациентов со слабой степенью атрофии и у пациента с умеренными атрофическими изменениями. Результаты морфологического исследования антрального отдела желудка представлены в Таблице 41.

Таблица 41

Морфологическая характеристика слизистой оболочки антрального отдела желудка пациентов с АПК

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Нет (0) n=7</th>
<th>Слабая (I) n=7</th>
<th>Умеренная (II) n=1</th>
<th>Тяжелая (III) n=0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Возраст</td>
<td>Me=47</td>
<td>Me=50</td>
<td>71</td>
<td>-</td>
</tr>
<tr>
<td>Пепсиноген II</td>
<td>↑1</td>
<td>↑1</td>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td>Гастрин-17</td>
<td>↑4</td>
<td>↑6</td>
<td>↑</td>
<td>-</td>
</tr>
<tr>
<td>H.pylori</td>
<td>3</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Кишечная метаплазия</td>
<td>-</td>
<td>3</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

У пациентов в антральном отделе не было выявлено явлений дисплазии эпителия.

3.8.3 Результаты иммуногистохимического исследования слизистой оболочки желудка

Была предпринята попытка проведения иммуногистохимического исследования слизистой оболочки тела желудка с хромогранином А с целью оценки плотности эндокриноцитов (ЭХП-клеток). Было выбрано 5 пациентов с различными проявлениями: от бессимптомного течения до тяжелой В12-дефицитной анемии. По 20 полям зрения при морфологическом исследовании оценивалось количество эндокриноцитов, а также площадь, занимаемая ими. Результаты представлены в Таблице 42.
Таблица 42

Результаты иммуногистохимического исследования слизистой оболочки тела желудка пациентов с АПК

<table>
<thead>
<tr>
<th>Клиническая характеристика</th>
<th>Возраст пациента</th>
<th>Количество клеток, n</th>
<th>Площадь, мкм²</th>
</tr>
</thead>
<tbody>
<tr>
<td>АПК и инфекция H.pylori</td>
<td>36</td>
<td>46</td>
<td>55696,37</td>
</tr>
<tr>
<td>АПК без инфекции H.pylori</td>
<td>65</td>
<td>25,5</td>
<td>65659,03</td>
</tr>
<tr>
<td>АПК без инфекции H.pylori</td>
<td>69</td>
<td>40,5</td>
<td>52384,78</td>
</tr>
<tr>
<td>Аутоиммунный атрофический гастрит с гипергастринемией, H.pylori-неассоциированный, дефицит витамина В12</td>
<td>66</td>
<td>38</td>
<td>51443,63</td>
</tr>
<tr>
<td>Аутоиммунный атрофический гастрит с гипергастринемией, H.pylori-неассоциированный, тяжелая В12-дефицитная анемия</td>
<td>71</td>
<td>44</td>
<td>56009,05</td>
</tr>
</tbody>
</table>

Полученные результаты не выявили различий в количестве ЭХП-клеток, а также площади, занимаемой ими в теле желудка. Стоит отметить, что по данным рутинного морфологического исследования также не было выявлено случаев гиперплазии линейной либо микронодулярной, что и подтвердило иммуногистохимическое исследование (Рисунок 32).

Рисунок 32 – Слизистая оболочка тела желудка при проведении иммуногистохимического исследования с хромогранином А. В коричневый цвет окрашены эндокриноциты (ЭХП-клетки). x200 (данные предоставлены профессором, д.м.н. Тертычным А.С.)
Клинический пример №1

Впервые пациентка С. обратилась для обследования в 2011 году в возрасте 37 лет. Основными жалобами на тот момент были выпадение волос, ломкость ногтей, быстрая утомляемость. Кроме того, при нарушении дiets появлялись боли в эпигастральной области, которые купировались приемом антацидов. На амбулаторном этапе было выявлено снижение уровня сывороточного витамина В12 до 137 пмоль/л (норма 142-725), железа до 23 мкг/дл (норма 40-150). В связи с этим были исследованы антитела к париетальным клеткам, а также показатели Гастропанели (пепсиноген I, пепсиноген II, гастрин-17, антитела IgG к H.pylori). Полученные результаты позволили установить диагноз: аутоиммунный атрофический гастрит (АТ к париетальным клеткам 1:160), ассоциированный с H.pylori, с развитием дефицита витамина B12. Морфологическое исследование слизистой оболочки желудка позволило выявить слабую лимфоплазмоцитарную инфильтрацию, а также очаги тонкокишечной метаплазии в теле желудка. Кроме того, было выявлено повышение титров антител к ТПО и диффузные изменения при УЗ-исследовании ткани щитовидной железы, что дало основание для установления диагноза аутоиммунного тиреоидита. На тот момент уровень сывороточного пепсиногена I был снижен до 12,35 мкг/л (норма 30-165). Обращает на себя внимание отсутствие признаков мегалобластного кроветворения на фоне дефицита кобаламина (ЦП 0,91, MCV 92 фл, MCH 30 пг), что свидетельствует о более глубоком дефиците железа. Стоит отметить наличие у пациентки длительных обильных менструаций как основной причины кровопотери. Подводя итоги первичного обследования больной, можно сделать вывод, что поводом для обращения послужили признаки дефицита железа, в то время как проявлений недостаточности витамина B12 не выявлено. Пациентке был намечен план дальнейшего наблюдения, который включал проведение эрадикационной терапии H.pylori, терапия препаратами витамина B12 и железа, исследование клинического
анализа крови каждые 6 месяцев с оценкой уровня гемоглобина, MCV, MCH, сывороточного железа и витамина B12, ежегодное исследование гормонов щитовидной железы. Летом 2012 года вновь были исследованы сывороточные маркеры атрофии: отмечено дальнейшее снижение пепсиногена I до 6,49 мкг/л, гипергастринемия 54 пмоль/л (норма 1-10). Проведена суточная pH-метрия желудка (Рисунок 33).

Рисунок 33 - pH-грамма тела желудка пациентки С. (данные предоставлены к.м.н. Стороновой О.А.)

По данным суточной pH-метрии желудка уровень базальной и стимулированной секреции соляной кислоты резко снижен, минимальное значение pH – 5,3, основную часть суток (95%) pH регистрируется в диапазоне 6,0-8,0. Кроме того, отмечаются косвенные признаки значительного дуоденогастрального щелочного рефлюкса (Таблица 43).

<table>
<thead>
<tr>
<th>Результаты суточной pH-метрии тела желудка пациентки С.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Результаты</td>
</tr>
<tr>
<td>Минимальное значение pH</td>
</tr>
<tr>
<td>Максимальное значение pH</td>
</tr>
<tr>
<td>Среднее значение pH</td>
</tr>
</tbody>
</table>

Таким образом, данные инструментальных методов подтвердили результаты серологического исследования – у пациентки имел место атрофический гастрит тела желудка с развитием гипосекреции.
В качестве эрадикационной терапии с учетом анамнестических данных и аллергологического статуса была выбрана четырехкомпонентная схема на основе висмута трикалия дицитрата в течении 10 дней. Успех эрадикации *H. pylori* был подтвержден с помощью «золотого стандарта» - дыхательного теста с \(^{13}\)C-меченной мочевиной.

При очередной госпитализации в 2013 году по данным морфологического исследования выявлены атрофические изменения слизистой оболочки, более выраженные в теле с единичными лимфоидными скоплениями. Показатели клинического анализа крови, сывороточного железа и витамина B12 на фоне терапии препаратами железа и кобаламина были без патологических изменений.

В 2015 году вновь были исследованы показатели пепсиногена I – 6,2 мкг/л. Морфологическое исследование слизистой оболочки тела желудка продемонстрировало наличие псевдогипертрофии париетальных клеток, обильную лимфоидную инфильтрацию в строме, а также явления кишечной метаплазии (Рисунок 34).

Рисунок 34 – Псевдогипертрофия париетальных клеток (указана стрелкой) при аутоиммунном гастрите. Окраска гематоксилином и эозином, х400 (данные предоставлены профессором, д.м.н. Тертычным А.С.)
Анализируя данные 4-летнего наблюдения за пациенткой можно сделать следующие выводы:

1) Аутоиммунный гастрит был выявлен «случайно» - без яркой клинической картины дефицита витамина В12

2) Ведущими симптомами являлись проявления дефицита железа

3) На фоне наличия инфекции H.pylori в динамике отмечено снижение уровня сывороточного пепсиногена I, однако после эрадикации показатели пепсиногена I стабилизировались

4) Результаты рН-метрии о наличии гипосекреции соляной кислоты подтверждают результаты серологического исследования (низкие значения пепсиногена I и гипергастринемия)

5) После проведения эрадикационной терапии H.pylori сохранялся дефицит витамина B12

6) Заместительная терапия препаратами железа и витамина B12 предотвращает развитие анемии

Клинический пример №2

С 2011 года в клинике наблюдается пациент А. 51 года. Из анамнеза известно, что с 1987 года больной страдает аутоиммунным тиреоидитом без нарушения функции щитовидной железы. Впервые мегалобластная анемия (гемоглобин 110 г/л) и снижение уровня витамина B12 выявлены в 2000 году. Пациенту было проведено 10 инъекций витамина B12 по 500 мкг. Причина дефицита установлена не была, дальнейших рекомендаций по лечению анемии не получено. В 2001 и 2007 годах при ЭГДС были выявлены эрозии в антральном отделе желудка. Тесты на H.pylori были отрицательные, в связи с чем проводилась терапия ингибиторами протонной помпы и антацидами с положительным клиническим эффектом.

В 2011 году при обследовании выявлены антитела к париетальным клеткам в диагностическом титре, снижение уровня пепсиногена I (9,15 мкг/л) и гипергластринемия (41 пмоль/л). Кроме того, результаты рН-метрии

Рисунок 35 - рН-грамма желудка пациента А. (данные предоставлены к.м.н. Стороновой О.А.)

Расчетные данные свидетельствуют о сохранении рН в диапазоне 4,0-7,0 в течение 86% времени (Таблица 44).

Таблица 44

Результаты суточной рН-метрии желудка пациента А.

<table>
<thead>
<tr>
<th>Результаты</th>
<th>Общие</th>
<th>Стоя</th>
<th>Лежа</th>
<th>Норма</th>
</tr>
</thead>
<tbody>
<tr>
<td>Минимальное значение рН</td>
<td>3,1</td>
<td>3,5</td>
<td>3,1</td>
<td>1,5</td>
</tr>
<tr>
<td>Максимальное значение рН</td>
<td>7,3</td>
<td>7,3</td>
<td>6,8</td>
<td>2,0</td>
</tr>
<tr>
<td>Среднее значение рН</td>
<td>5,6</td>
<td>5,7</td>
<td>5,4</td>
<td>1,8</td>
</tr>
</tbody>
</table>

Пациенту была произведена множественная биопсия слизистой оболочки желудка. В теле желудка отмечается слабовыраженная атрофия, склероз собственной пластинки со слабо выраженной инфильтрацией мононуклеарными клетками.

Пациенту проводилась заместительная терапия препаратами витамина B12, на фоне чего показатели клинического анализа и сывороточного кобаламина сохранялись в пределах нормальных значений.
Результаты морфологического исследования в 2013 году свидетельствуют о нарастании атрофических изменений в теле желудка: истончение слизистой оболочки, уменьшение количества желез, выраженная диффузная инфильтрация собственной пластинки лимфоплазмоцитарными элементами (Рисунок 36).

Рисунок 36 – Выраженная лимфоплазмоцитарная инфильтрация слизистой оболочки тела желудка, ее истончение. Окраска гематоксилином и эозином, х200 (данные предоставлены профессором, д.м.н. Тертычным А.С.)

В 2014 году отмечена отрицательная динамика в виде появления фокусов кишечной метаплазии, формирования лимфоидных фолликулов и кистозным расширением желез.

Анализируя результаты наблюдения за пациентом можно сделать следующие выводы:

1) Развитие В12-дефицитной анемии послужило причиной выявления аутоиммунного гастрита
2) Дефицит кобаламина быстро и эффективно поддается коррекции на фоне проведения заместительной терапии
3) Отсутствие инфекции H.pylori
4) Прогрессирующее течение атрофического гастрита
Клинический пример №3

Пациентка Х., 36 лет в 2012 году проходила обследование. Поводом для обращения за медицинской помощью на амбулаторном послужили жалобы на эпизоды болей в правом подреберье и эпигастрис, сопровождающиеся тошнотой и жидким стулом после употребления жирной пищи. При ультразвуковом исследовании брюшной полости выявлены конкременты в желчном пузыре. Эндоскопическое исследование выявило эрозии в антральном отделе желудка. Кроме того, был проведен анализ на наличие антител к париетальным клеткам, которые выявлены в диагностическом титре в связи с чем пациентка была отправлена на дообследование. Показатели Гастропанели свидетельствовали об активном воспалительном процессе, инициированном H.pylori: пепсиноген I 205,9 мкг/л (30-165), пепсиноген II 35,8 мкг/л (3,0-15,0), гастрин-17 28,7 пмоль/л (3-20), H.pylori IgG 76,5 Ед/л (0-30). Снижения уровня железа и витамина B12 не отмечено.

Инструментальные методы исследования подтвердили отсутствие атрофических изменений в теле желудка (Рисунок 37).

Рисунок 37 - рН-грамма тела желудка пациентки Х. (данные предоставлены к.м.н. Стороновой О.А.)

Минимальное значение рН было 0,9, а время с рН <1,6 составило 99% времени исследования, что свидетельствует о гиперсекреции соляной кислоты (Таблица 45).
Результаты суточной рН-метрии тела желудка пациентки Х.

<table>
<thead>
<tr>
<th>Результаты</th>
<th>Общие</th>
<th>Стоя</th>
<th>Лежа</th>
<th>Норма</th>
</tr>
</thead>
<tbody>
<tr>
<td>Минимальное значение рН</td>
<td>0,9</td>
<td>0,9</td>
<td>1,1</td>
<td>1,5</td>
</tr>
<tr>
<td>Максимальное значение рН</td>
<td>3,7</td>
<td>3,4</td>
<td>3,7</td>
<td>2,0</td>
</tr>
<tr>
<td>Среднее значение рН</td>
<td>1,0</td>
<td>0,9</td>
<td>0,9</td>
<td>1,8</td>
</tr>
</tbody>
</table>

Результаты морфологического исследования слизистой оболочки желудка выявили явления активного воспаления в антральном отделе, связанные с *H. pylori*. В теле желудка атрофических изменений, выраженной инфильтрации не отмечено (Рисунок 38).

Рисунок 38 – Слизистая оболочка тела желудка нормального строения. Окраска гематоксилином и эозином (данные предоставлены профессором, д.м.н. Тертычным А.С.)

Анализ наблюдения:
1) «Случайное» выявление антител к париетальным клеткам
2) Отсутствие атрофических изменений по данным морфологического исследования
3) Сохранная кислотопродуцирующая функция желудка
4) Отсутствие дефицита витамина В12 и железа

Заключение
Приведенные клинические примеры демонстрируют различные варианты течения АИГ. У молодых пациентов антитела к париетальным клеткам чаще всего
выявляются случайно. Это связано с длительностью развития патологических изменений в слизистой оболочке желудка. Клиническое наблюдение №3 представляет пациента без каких-либо клинических проявлений АИГ: нормальные показатели железа и витамина B12 в сыворотке крови. Характерным является изменение сывороточных маркеров атрофии на фоне инфекции H.pylori: их повышение свидетельствует о наличии активного воспаления в слизистой оболочке, что подтверждено результатами морфологического исследования. Более того, не было выявлено признаков АИГ в теле желудка. Пациентке была проведена эрадикационная терапия H.pylori. Таким образом, наличие антител к париетальным клеткам у пациента не привело к развитию воспалительных изменений в слизистой оболочке тела желудка на момент обследования. Можно сделать вывод о наличии антител, значение которых неизвестно. Кроме того, обращает на себя внимание сочетание активного гастрита, ассоциированного с H.pylori и аутоантител к структурам желудка.

Клинический пример №1 демонстрирует еще одно характерное проявление АИГ у молодых женщин: развитие недостаточности железа. Поводом для обращения за медицинской помощью в данном случае послужили симптомы железодефицита: изменения со стороны придатков кожи, слабость. Однако, по результатам обследования выявлены атрофические изменения в слизистой оболочке тела желудка, которым сопутствовал дефицит витамина B12. Интересно отметить, что недостаточность железа маскирует дефицит кобаламина: при их низких значениях в клиническом анализе крови не отмечено признаков нарушения кроветворения ни в сторону макроцитоза, ни в сторону микроцитоза. Становится очевидным необходимость исследования уровня железа и витамина B12 у пациентов с АИГ даже при нормальных показателях MCV и MCH. Динамика показателей пепсиногена I, рассматриваемого как маркера атрофии в теле желудка, свидетельствует о нарастании патологических изменений. Однако после проведенной эрадикационной терапии H.pylori отмечена стабилизация пепсиногена I за 3-летний период после лечения. Результаты морфологического
исследования подтверждают наличие атрофии тела желудка и кишечной метаплазии. В тоже время, успешная элиминация инфекции не повлияла на показатели витамина В12: пациентка продолжала получать поддерживающую терапию препаратами кобаламина и железа. Таким образом, пациентка относится к группе риска по развитию аденокарциномы желудка и нуждается в продолжении терапии препаратами витамина В12 и железа для предотвращения развития анемии. Выведенная при морфологическом исследовании псевдогипертрофия париетальных клеток является характерной для АИГ.

Во втором клиническом примере диагноз АИГ был обоснован обнаружением низкого уровня кобаламина. Стоит отметить частую ошибку в лечении подобных пациентов: для предотвращения развития анемии у пациентов с дефицитом кобаламина заместительная терапия назначается пожизненно, отмена витамина В12 после нормализации показателей крови недопустима. Отмечена выраженная отрицательная динамика морфологической картины за время наблюдения: от слабой лимфоплазмоцитарной инфильтрации с признаками атрофии в теле желудка до формирования лимфоидных фолликулов и появления очагов кишечной метаплазии. Таким образом, пациенту показана не только заместительная терапия витамином В12, но регулярное проведение эндоскопического исследования с целью своевременной диагностики рака желудка.
ГЛАВА 4. Обсуждение полученных результатов

В данной работе анализировались результаты обследования 169 пациентов, проходивших лечение с марта по ноябрь 2012 года в клинике пропедевтики внутренних болезней, гастроэнтерологии и гепатологии им. В.Х. Василенко. Из них: 106 человек с установленным диагнозом аутоиммунного тиреоидита, 1 пациент с целиакией, 23 пациента с аутоиммунными заболеваниями печени, контрольную группу составили 39 пациентов без установленных аутоиммунных заболеваний. Все пациенты были обследованы на наличие антител к париетальным клеткам желудка, благодаря чему была сформирована группа больных с АПК (71 пациент). Медиана возраста в изучаемой группе составила 60 лет, соотношение мужчин и женщин 1:5,5. Распространенность АПК среди пациентов с аутоиммунным тиреоидитом составила 51,9%, в то время как среди пациентов с аутоиммунными заболеваниями печени и пациентов контрольной группы АПК выявлялись достоверно реже (30,4% и 23% соответственно). Кроме того, отмечено увеличение частоты выявления АПК с возрастом: от 27,9% у лиц 20-39 лет до 53,8% у пациентов 70-79 лет (p=0,0376). Достоверной разницы по распространенности АПК между мужчинами и женщинами выявлено не было. Кроме того, сформирована группа пациентов без аутоиммунных заболеваний и без АПК: 16 пациентов, средний возраст 37,5±12,8 лет, соотношение мужчин и женщин 1:3.

Основные жалобы пациентов были обусловлены теми заболеваниями, которые явились причиной госпитализации: ишемическая болезнь сердца, гипертоническая болезнь, хронический панкреатит, аутоиммунные заболевания печени, язвенная болезнь. Пациенты с анемией предъявляли жалобы на появление общей слабости, а пациенты с железодефицитом отмечали усиление выпадения волос, ломкость ногтей. Кlassических проявлений пернициозной анемии совместно с глюсситом Гунтера-Мюллера и функулярным миелозом не было выявлено.

При оценке средних показателей клинического анализа крови у пациентов с АПК отклонений от нормы не выявлено. Отмечена достоверная корреляционная...
положительная связь между возрастом пациентов и ЦП (коэффициент корреляции 0,25), МCV (коэффициент корреляции 0,32). Гематологические изменения присутствовали у 25,4% пациентов с АРСА. Анемия была выявлена у 8 пациентов (11,3%), в 5 случаях она была В12-дефицитной (7%). Макроцитоз был выявлен у 12 больных (16,9%), гиперхромия – у 6 (8,5%). В группе пациентов без аутоиммунных заболеваний и без АПК медианы показателей клинического анализа крови не выходили за рамки нормальных значений. У одной пациентки из данной группы выявлена микроцитарная гипохромная анемия алиментарного характера. Случаев увеличения таких показателей как ЦП, МСН, МCV не обнаружено. Снижение ЦП выявлено у 18,8% больных, снижение МСН также у 18,8% пациентов и снижение МCV – у 12,5%. Достоверные различия получены лишь по распространённости низких значений МСН у пациентов с АПК и пациентов без аутоиммунных заболеваний и без АПК (4,2% против 18,8%; \(\chi^2 \) Пирсона, \(p=0,0383 \)).

Дефицит железа выявлен у 7 пациентов с АПК (9,9%), преимущественно женщин, медиана возраста составила 57 лет. Дефицит кобаламина определялся у 12 (16,9%), медиана возраста 71 год. Таким образом, у больших болных с дефицитом витамина В12 анемии не выявлено, хотя существовали признаки мегалобластного кроветворения. Не было обнаружено достоверных различий по распространенности \(H. pylori \) у пациентов с и без дефицита железа и кобаламина. Однако дефицит витамина В12 достоверно чаще выявлялся у пациентов без \(H. pylori \) (28,1% против 7,7%, \(\chi^2 \) Пирсона, \(p=0,0223 \)). Выявлена достоверная отрицательная корреляционная связь между возрастом и витамином В12 (коэффициент корреляции -0,39, \(p=0,0006 \)). Медiana железа была достоверно ниже у больных с низкими значениями ЦП, МСН и МCV (\(p<0,05 \)). Обратная ситуация со средними значениями витамина В12: они были достоверно ниже у больных с высоким ЦП, МСН и МCV (\(p<0,05 \)). В группе пациентов без аутоиммунных заболеваний и без АПК медианы биохимических показателей были в пределах нормальных значений. Дефицит железа выявлен у 3 пациенток (18,8%), случаев дефицита витамина В12 не обнаружено. Достоверной разницы по
распространенности дефицита железа между пациентами с АПК и пациентами без аутоиммунных заболеваний и без АПК не выявлено (9,9% против 18,8%; \(\chi^2 \) Пирсона, \(p=0,3138 \)).

Распространенность инфекции \(H.pylori \) у пациентов с АПК составила 54,9%. У пациентов без аутоиммунных заболеваний и без АПК распространенность \(H.pylori \) составила 56,2%. Достоверных различий между распространенностью инфекции \(H.pylori \) в этих группах получено не было. Интересно, что выявлена достоверная разница (\(p=0,0056 \)) по распространенности инфекции \(H.pylori \) среди лиц с нормальными значениями пепсиногена I (70%), в сравнении с больными с низкими значениями пепсиногена I (35,3%).

У пациентов старше 70 лет с АПК показатели MCV и MCH были выше референсных значений и достоверно отличались от пациентов с АПК и инфекцией \(H.pylori \) (\(p<0,05 \)). Также касается и кобаламина в данной возрастной группе (\(p=0,0350 \)). Медианы показателей клинического анализа крови и биохимических показателей у пациентов без АПК не выходили за рамки нормальных значений вне зависимости от наличия инфекции \(H.pylori \).

Оценка серологических маркеров атрофии показала, что у 47,9% пациентов с АПК снижен показатель пепсиногена I, отношение пепсиноген I/II оказалось ниже нормальных значений у 45,1% больных, а гипергастринемия имела место у 64,8% пациентов. Выявлена достоверная отрицательная корреляционная связь между возрастом и отношением пепсиноген I/II (коэффициент корреляции -0,28, \(p=0,0151 \)) и положительная связь между возрастом и гастрином-17 (коэффициент корреляции 0,33, \(p=0,0047 \)), что свидетельствует о нарастании атрофических изменений в теле желудка с течением времени у пациентов с АПК. Кроме того, выявлены достоверные связи между титром АПК и пепсиногеном I (коэффициент корреляции Спиримена -0,50, \(p<0,0001 \)) и гастрином-17 (коэффициент корреляции Спиримена 0,64, \(p<0,0001 \)). Таким образом, прослеживается тенденция к увеличению атрофических изменений в теле желудка у пациентов с высокими титрами антител к париетальным клеткам. Медианы серологических маркеров у
пациентов без аутоиммунных заболеваний и без АПК не выходили за рамки нормальных значений.

Медианы серологических маркеров (пепсиноген I, отношение пепсиноген I/II, гастрин-17) у пациентов с АПК с гиперхромией и макроцитозом выходили за рамки нормальных значений и свидетельствовали о развитии атрофических изменений в теле желудка. У всех пациентов с мегалобластной анемией показатели пепсиногена I были ниже нормы, а гастрина-17 — выше. Корреляционный анализ выявил положительную связь средней силы между пепсиногеном I и гемоглобином (коэффициент корреляции 0,26, p=0,0256), а также количеством эритроцитов (коэффициент корреляции 0,34, p=0,0030). Отрицательная корреляционная связь выявлена между гастрином-17 и гемоглобином (коэффициент корреляции -0,31, p=0,0076), количеством эритроцитов (коэффициент корреляции -0,25, p=0,0351). Достоверно снижены были показатели пепсиногена I (p=0,0010) и отношения пепсиноген I/II (p=0,0029), а медиана гастрин-17 достоверно выше (p=0,0081) у пациентов с дефицитом витамина B12 в сравнении с больными без такового. Корреляционный анализ выявил достоверную положительную связь между витамином B12 и пепсиногеном I (коэффициент корреляции 0,23, p=0,0517), отношением пепсиноген I/II (коэффициент корреляции 0,3, p=0,0105) и отрицательную связь средней силы между цианокобаламином и гастрином-17 (коэффициент корреляции -0,27, p=0,0207).

Показатели пепсиногена I у пациентов с АПК и без H.pylori старше 50 лет были ниже нормы и достоверно отличались от таковых у пациентов с АПК и инфекцией H.pylori, что свидетельствует о развитии более выраженных атрофических изменений в теле желудка у данной группы пациентов. Достоверно выше были средние показатели пепсиногена II у пациентов с АПК и H.pylori старше 60 лет в сравнении с пациентами без инфекции, что является следствием активного воспалительного процесса в антральном отделе желудка.

Проведено сравнение пациентов с атрофическим гастритом тела желудка (низкие значения пепсиногена I и гипергастринемия) и пациентов без атрофии.
Было выявлено, что пациенты с атрофическим гастритом достоверно старше патентов с неизмененной слизистой (62 года и 57 лет соответственно, \(p=0,0113 \)). Достоверно различались средние значения гемоглобина и количества эритроцитов, MCV, витамина B12, хотя и не выходили за рамки нормальных значений (\(p<0,05 \)). У пациентов с атрофическим гастритом медиана гастрин-17 была достоверно высше (\(p<0,0001 \)) и превышала верхний лимит нормы в 4,7 раза. Достоверно чаще у пациентов с атрофическим гастритом выявлялся макроцитоз (\(p=0,0361 \)) и дефицит витамина B12 (\(p=0,0030 \)).

Между средними показателями клинического и биохимического анализа крови у пациентов с атрофическим гастритом с и без \(H.pylori \) достоверных различий не выявлено. Хотя у 4 пациентов с атрофий и без \(H.pylori \) (18,2%) выявлена анемия, у 5 – повышение ЦП (22,7%), а у 6 – повышение МСН (27,3%), в то время как среди пациентов с \(H.pylori \) подобных изменений не было выявлено вовсе. Достоверных различий по распространенности макроцитоза не выявлено (8,3% у пациентов с \(H.pylori \) против 36,4% у пациентов без инфекции, \(p=0,0767 \)).

Эндоскопическое исследование было проведено 39 больным. Из них у 16 пациентов выявлены признаки катарального рефлюкс-эзофагита, у 35 отмечены признаки воспаления в антральном отделе желудка. Кроме того, у пациентов были выявлены эрозивно-язвенные изменения: у 9 больных – эрозии слизистой оболочки желудка, а у 5 – язвы двенадцатиперстной кишки. Эндоскопические признаки атрофии слизистой оболочки антрального отдела желудка выявлены у 17 пациентов, кишечной метаплазии – у 3 больных.

Морфологическое исследование слизистой оболочки различных отделов желудка было проведено 15 пациентам. У 12 пациентов выявлены признаки атрофических изменений в теле желудка разной степени выраженности. Характерными изменениями при АИГ является: лимфоплазмоцитарная инфильтрация вплоть до формирования лимфоидных фолликулов, псевдогипертрофия париетальных клеток, кистозное расширение просвета желез. Постепенно происходит разрушение собственных желез желудка, истоночение
слизистой оболочки, появление участков кишечной метаплазии. Явлений гиперплазии ЭХП-клеток не было выявлено ни при рутинном морфологическом исследовании, ни при иммуногистохимическом исследовании. Выведены достоверные различия у пациентов без атрофических изменений в теле желудка и у пациентов с умеренной атрофией по показателям пепсиногена I (205,9 мкг/л против 14,69 мкг/л) и гастрин-17 (28,7 пмоль/л против 44,5 пмоль/л). У 8 пациентов выявлено поражение антрального отдела в виде слабой и умеренной атрофии с участками кишечной метаплазии. Во всех случаях имела место инфекция H. pylori.

Подводя итоги проведенного исследования всех пациентов с АПК можно разделить на две большие группы. Первую группу составляют пациенты с повышенным титром АПК, однако без каких-либо клинических проявлений аутоиммунного гастрита. В данном исследовании их доля составила 52,1%. Значение АПК у данных пациентов не известно.

Вторую группу пациентов составляют больные с АПК и проявлениями аутоиммунного гастрита в виде атрофии слизистой оболочки тела желудка (47,9%). У 32,4% пациентов в данной группе выявлялось снижение уровня витамина B12, что достоверно (p=0,0030) отличалось от пациентов без атрофических изменений (3,3%). Дефицит кобаламинна проявлялся в увеличении объема эритроцитов: макроцитоз выявлен у 26,5% больных, а у пациентов без атрофических изменений в 6,6%, различия в группах достоверны (p=0,0361). Различный по дефициту железа не получено. Распространенность анемии у пациентов с атрофическим аутоиммунным гастритом составила 17,6%, у пациентов без атрофии – 6,6% (p=0,1850). Инфекция H. pylori у пациентов с атрофическим гастритом выявлялась достоверно реже. Наличие H. pylori не оказывало достоверного влияния на средние показатели клинического и биохимического анализа крови у пациентов с атрофическим гастритом тела желудка.

В течение 4х лет проводилось динамическое наблюдение за пациентами с АИГ. Всем пациентам с дефицитом витамина B12 или железа проводилась
заместительная терапия, которая предотвращала развитие анемии. Традиционное применение инъекционных форм цианокобаламина (200-500 мкг) дважды в месяц позволяло поддерживать нормобластное кроветворение. За указанный период наблюдения не было выявлено случаев аденокарциномы и карциноида желудка. В Клиническом примере №1 описана динамика пепсиногена I у пациентов с АИГ после эрадикационной терапии H.pylori. Отмечено, что до проведения лечения пепсиноген I снизился с 12,35 мкг/л до 6,49 мкг/л в течение двух лет. После эрадикационной терапии значимой динамики данного показателя не наблюдается: через 2 года после терапии уровень пепсиногена I составляет 6,2 мкг/л. Эти данные указывают на замедление развития атрофических изменений в слизистой оболочке тела желудка под влиянием эрадикационной терапии H.pylori.
Выводы

1. Антитела к париетальным клеткам желудка (АПК) были выявлены у 51,9% пациентов с аутоиммунным тиреоидитом и у 30,4% пациентов с аутоиммунными заболеваниями печени. В то же время АПК обнаруживались у 23% лиц контрольной группы, не имеющих аутоиммунных заболеваний. Различия между распространенностью АПК у пациентов с тиреоидитом и пациентами без аутоиммунных заболеваний были достоверны (p=0,0020). Собственно аутоиммунный гастрит (АПК и низкий уровень пепсиногена I) выявлялся у 26% пациентов с аутоиммунным тиреоидитом, у 13% больных с аутоиммунными заболеваниями печени и у 7,7% пациентов контрольной группы.

2. В изучаемой группе было отмечено достоверное увеличение частоты обнаружения АПК с возрастом: от 27,9% у лиц 20-39 лет до 53,8% у пациентов 70-79 лет (p=0,0376). Достоверной разницы между распространенностью АПК у мужчин и женщин не выявлено.

3. У 16,9% пациентов с АПК определялся дефицит витамина В12, у 7% больных из этой группы – макроцитарная анемия, дефицит железа определялся у 9,9% больных. Частыми изменениями лабораторных показателей у пациентов с АПК служили макроцитоз (16,9%) и гиперхромия (8,5%). Наиболее высокие показатели среднего объема эритроцитов и среднего содержания гемоглобина в эритроците обнаруживались у пациентов старше 70 лет. Дефицит витамина В12 достоверно чаще отмечался у пациентов с АПК и низким уровнем пепсиногена I по сравнению с пациентами с нормальным уровнем пепсиногена I (32,4% против 3,3%, p=0,0030).

4. У пациентов с АПК при морфологическом исследовании характерными изменениями являлись лимфоплазмоцитарная инфильтрация слизистой оболочки тела желудка с формированием лимфоидных фолликулов,
псевдогипертрофия париетальных клеток, кистозное расширение просвета желез. Наиболее часто определялась умеренная и средняя степень атрофии слизистой оболочки с развитием кишечной метаплазии.

5. У 54,9% пациентов с АПК обнаруживалась инфекция H. pylori, что достоверно не отличалось от распространенности H. pylori у пациентов без АПК (56,2%). Инфекция H. pylori чаще выявлялась у пациентов с АПК и нормальным уровнем пепсиногена I в сравнении с пациентами со сниженным содержанием пепсиногена I и атрофическими изменениями в теле желудка (соответственно 70% и 35,3%, p=0,0056).

6. У 47,9% пациентов с АПК отмечено снижение пепсиногена I, отношение пепсиноген I/II было ниже нормальных значений у 45,1% больных, повышение уровня гастрин-17 имело место у 64,8% пациентов, что указывало на наличие атрофических изменений в теле желудка. Выявлена отрицательная корреляционная связь между титром АПК и уровнем пепсиногена I (коэффициент корреляции Спирмена -0,50, p<0,0001). Положительная корреляционная связь обнаружена между уровнем пепсиногена I и содержанием витамина В12 (коэффициент корреляции Спирмена 0,23, p=0,0517).

7. Проведение эрадикационной терапии H. pylori у пациентов с АПК тормозит дальнейшее прогрессирование атрофических изменений слизистой оболочки тела желудка и способствует стабилизации уровня пепсиногена I.
Практические рекомендации

1. Своевременная диагностика АИГ для формирования групп пациентов с повышенным риском развития дефицита витамина B12 и железа, а также для выявления предраковых изменений в слизистой оболочке желудка.

2. Определение содержания сывороточного витамина B12 и железа у пациентов с аутоиммунным гастритом для профилактики развития анемии.

3. Проведение эрадикационной терапии инфекции *H.pylori* для замедления развития патологических изменений в слизистой оболочке желудка.
Список сокращений

APCA – anti-parietal cell antibody, антитела к париетальным клеткам желудка
ELISA - enzyme-linked immunosorbent assay, иммуноферментный анализ
G-17 – gastrin-17, гастрин-17
GWAS - genome-wide association study, полногеномное исследование
IL-1- интерлейкин-1
IL-2 - интерлейкин-2
IL-4 - интерлейкин-4
IL-6 - интерлейкин-6
IL-10 - интерлейкин-10
IL-12 - интерлейкин-12
IFNγ – интерферон гамма
KIRs - killer cell immunoglobulin-like receptor, иммуноглобулиноподобный рецептор клеток-киллеров
MCH – mean cell hemoglobin, среднее содержание гемоглобина в эритроците
MCHC – mean cell hemoglobin concentration, средняя концентрация гемоглобина в эритроците
MCV – mean cell volume, средний объем эритроцита
OLGA - Operative Link for Gastritis Assessment
PG I – pepsinogen I, пепсиноген I
PG II – pepsinogen II, пепсиноген II
PG I/II - пепсиноген I/II, отношение пепсиногена I к пепсиногену II

TGFβ – трансформирующий фактор роста бета

TNFα – фактор некроза опухоли альфа

АИГ – аутоиммунный гастрит

АПК – антитела к париетальным клеткам

ОШ – отношение шансов

ЦП – цветовой показатель

ЭХП-клетки – энтерохромаффиноподобные клетки
Список литературы

37) Bonne C., Hartz P.H., Klerks J.V., Posthuma J.H., Radsma W., Tjokronegoro S. Morphology of the stomach and gastric secretion in Malays and Chinese and the

88) Hershko C., Hoffbrand A.V., Keret D., Souroujon M., Maschler I., Monselise Y., Lahad A. Role of autoimmune gastritis, Helicobacter pylori and celiac disease in

117) Lo C.C., Hsu P.I., Lo G.H., Lai K.H., Tseng H.H., Lin C.K., Chan H.H., Tsai W.L., Chen W.C., Peng N.J. Implications of anti-parietal cell antibodies and anti-

126) Nafil H., Tazi I., Sifessalam M., Bouchtia M., Mahmal L. Clinical, biological and therapeutic profile of anemia by vitamin B12 deficiency in the department of
166

173) Toh B.H., Kyaw T., Taylor R., Pollock W., Schlumberger W. Parietal cell antibody identified by ELISA is superior to immunofluorescence, rises with age and is associated with intrinsic factor antibody // Autoimmunity. – 2012. – Vol.45. – P.527–32.

Библиотека литературы по функциональной гастроэнтерологии:
www.gastroscan.ru/literature/